File size: 22,857 Bytes
a7c2f52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da587e
 
 
a7c2f52
 
1da587e
a7c2f52
1da587e
 
 
af76ccc
1da587e
 
 
 
 
 
d84e653
1da587e
 
 
 
 
a7c2f52
1da587e
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
d84e653
1da587e
 
 
a7c2f52
1da587e
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
d84e653
1da587e
 
 
a7c2f52
1da587e
 
 
af76ccc
1da587e
 
 
 
 
 
 
d84e653
1da587e
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
d84e653
1da587e
 
 
 
 
 
 
af76ccc
1da587e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c2f52
 
 
 
 
 
 
 
 
1da587e
a7c2f52
 
af76ccc
a7c2f52
 
 
 
af76ccc
1da587e
a7c2f52
8878265
a7c2f52
 
 
1da587e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import gradio as gr
import soundfile
import time
import torch
import scipy.io.wavfile
from espnet2.utils.types import str_or_none
from espnet2.bin.asr_inference import Speech2Text
from subprocess import call
import os
from espnet_model_zoo.downloader import ModelDownloader
# print(a1)
# exit()
# exit()
# tagen = 'kan-bayashi/ljspeech_vits' 
# vocoder_tagen = "none" 



audio_class_str='0."dog", 1."rooster", 2."pig", 3."cow", 4."frog", 5."cat", 6."hen", 7."insects", 8."sheep", 9."crow", 10."rain", 11."sea waves", 12."crackling fire", 13."crickets", 14."chirping birds", 15."water drops", 16."wind", 17."pouring water", 18."toilet flush", 19."thunderstorm", 20."crying baby", 21."sneezing", 22."clapping", 23."breathing", 24."coughing", 25."footsteps", 26."laughing", 27."brushing teeth", 28."snoring", 29."drinking sipping", 30."door wood knock", 31."mouse click", 32."keyboard typing", 33."door wood creaks", 34."can opening", 35."washing machine", 36."vacuum cleaner", 37."clock alarm", 38."clock tick", 39."glass breaking", 40."helicopter", 41."chainsaw", 42."siren", 43."car horn", 44."engine", 45."train", 46."church bells", 47."airplane", 48."fireworks", 49."hand saw".'
audio_class_arr=audio_class_str.split(", ")
audio_class_arr=[k.split('"')[1] for k in audio_class_arr]

def inference(wav,data):
#   import pdb;pdb.set_trace()
  with torch.no_grad():
      speech, rate = soundfile.read(wav)
      if len(speech.shape)==2:
          speech=speech[:,0] 
      if data == "English intent classification and named entity recognition task based on the SLURP database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|ner|> <|SLURP|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            beam_size=1,
            ctc_weight=0.0,
            penalty=0.1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("in:","")
          scenario=intent.split("_")[0]
          action=intent.split("_")[1]
          ner_text=text.split(" SEP ")[1:-1]
          text="INTENT: {scenario: "+scenario+", action: "+action+"}\n"
          text=text+"NAMED ENTITIES: {"
          for k in ner_text:
            slot_name=k.split(" FILL ")[0].replace("sl:","")
            slot_val=k.split(" FILL ")[1]
            text=text+" "+slot_name+" : "+slot_val+","
          text=text+"}"
      elif data == "English intent classification task based on the FSC database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|ic|> <|fsc|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("in:","")
          action=intent.split("_")[0]
          objects=intent.split("_")[1]
          location=intent.split("_")[2]
          text="INTENT: {action: "+action+", object: "+objects+", location: "+location+"}"
      elif data == "English intent classification task based on the SNIPS database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|ic|> <|SNIPS|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("in:","")
          text="INTENT: "+intent
      elif data == "Dutch speech command recognition task based on the Grabo database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|nl|> <|scr|> <|grabo_scr|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0]
          text="SPEECH COMMAND: "+intent
      elif data == "English speech command recognition task based on the Google Speech Commands database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|scr|> <|google_scr|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("command:","")
          text="SPEECH COMMAND: "+intent
      elif data == "Lithuanian speech command recognition task based on the Lithuanian SC database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token= "<|lt|> <|scr|> <|lt_scr|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text
          text="SPEECH COMMAND: "+intent
      elif data == "Arabic speech command recognition task based on the Arabic SC database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token= "<|ar|> <|scr|> <|ar_scr|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("command:","")
          text="SPEECH COMMAND: "+intent
      elif data == "Language Identification task based on the VoxForge database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lid_prompt=True,
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
        #   import pdb;pdb.set_trace()
          lang=speech2text.converter.tokenizer.tokenizer.convert_ids_to_tokens(nbests[0][2][0]).replace("|>","").replace("<|","")
          text="LANG: "+lang
      elif data == "English Fake Speech Detection task based on the ASVSpoof database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|fsd|> <|asvspoof|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("class:","")
          text="SPEECH CLASS: "+intent
      elif data == "English emotion recognition task based on the IEMOCAP database":
          replace_dict={}
          replace_dict["em:neu"]="Neutral"
          replace_dict["em:ang"]="Angry"
          replace_dict["em:sad"]="Sad"
          replace_dict["em:hap"]="Happy"
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|er|> <|iemocap|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=replace_dict[text.split(" ")[0]]
          text="EMOTION: "+intent
      elif data == "English accent classification task based on the Accent DB database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|accent_rec|> <|accentdb|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("accent:","")
          text="ACCENT: "+intent
      elif data == "English sarcasm detection task based on the MUStARD database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|scd|> <|mustard|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("class:","")
          text="SARCASM CLASS: "+intent
      elif data == "English sarcasm detection task based on the MUStARD++ database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|scd|> <|mustard_plus_plus|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("class:","")
          text="SARCASM CLASS: "+intent
      elif data == "English gender identification task based on the VoxCeleb1 database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|gid|> <|voxceleb|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("gender:f","female").replace("gender:m","male")
          text="GENDER: "+intent
      elif data == "Audio classification task based on the ESC-50 database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|audio|> <|auc|> <|esc50|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1]
          intent=text.split(" ")[0].replace("audio_class:","")
          text="AUDIO EVENT CLASS: "+audio_class_arr[int(intent)]
      elif data == "English semantic parsing task based on the STOP database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lang_prompt_token="<|en|> <|sp|> <|STOP|>",
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            penalty=0.1,
            nbest=1
          )
          nbests = speech2text(speech)
          text, *_ = nbests[0]
          text=text.split("|>")[-1].replace("_STOP","")
          text="SEMANTIC PARSE SEQUENCE: "+text
      elif data == "Voice activity detection task based on the Google Speech Commands v2 and Freesound database":
          speech2text = Speech2Text.from_pretrained(
            asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
            asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
            # Decoding parameters are not included in the model file
            lid_prompt=True,
            prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
            ctc_weight=0.0,
            beam_size=1,
            nbest=1
          )
          nbests = speech2text(speech)
          lang=speech2text.converter.tokenizer.tokenizer.convert_ids_to_tokens(nbests[0][2][0])
          if lang=="<|nospeech|>":
            text="VAD: no speech"
          else:
             text="VAD: speech" 
      # if lang == "chinese":
      #     wav = text2speechch(text)["wav"]
      #     scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy())
      # if lang == "japanese":
      #     wav = text2speechjp(text)["wav"]
      #     scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy())
  return  text

title = "UniverSLU"
description = "Gradio demo for UniverSLU Task Specifier (https://huggingface.co/espnet/UniverSLU-17-Task-Specifier). UniverSLU-17 Task Specifier is a Multi-task Spoken Language Understanding model from CMU WAVLab. It adapts Whisper to additional tasks using single-token task specifiers. To use it, simply record your audio or click one of the examples to load them. More details about the SLU tasks that the model is trained on and it's performance on these tasks can be found in our paper: https://aclanthology.org/2024.naacl-long.151/"
article = "<p style='text-align: center'><a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"

examples=[['audio_slurp_ner.flac',"English intent classification and named entity recognition task based on the SLURP database"],['audio_fsc.wav',"English intent classification task based on the FSC database"],['audio_grabo.wav',"Dutch speech command recognition task based on the Grabo database"],['audio_english_scr.wav',"English speech command recognition task based on the Google Speech Commands database"],['audio_lt_scr.wav',"Lithuanian speech command recognition task based on the Lithuanian SC database"],['audio_ar_scr.wav',"Arabic speech command recognition task based on the Arabic SC database"],['audio_snips.wav',"English intent classification task based on the SNIPS database"],['audio_lid.wav',"Language Identification task based on the VoxForge database"],['audio_fsd.wav',"English Fake Speech Detection task based on the ASVSpoof database"],['audio_er.wav',"English emotion recognition task based on the IEMOCAP database"],['audio_acc.wav',"English accent classification task based on the Accent DB database"],['audio_mustard.wav',"English sarcasm detection task based on the MUStARD database"],['audio_mustard_plus.wav',"English sarcasm detection task based on the MUStARD++ database"],['audio_voxceleb1.wav',"English gender identification task based on the VoxCeleb1 database"],['audio_esc50.wav',"Audio classification task based on the ESC-50 database"],['audio_stop.wav',"English semantic parsing task based on the STOP database"],['audio_freesound.wav',"Voice activity detection task based on the Google Speech Commands v2 and Freesound database"]]

# gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language")
gr.Interface(
    inference, 
    [gr.Audio(label="input audio",sources=["microphone"],type="filepath"),gr.Radio(choices=["English intent classification and named entity recognition task based on the SLURP database","English intent classification task based on the FSC database","Dutch speech command recognition task based on the Grabo database","English speech command recognition task based on the Google Speech Commands database","Lithuanian speech command recognition task based on the Lithuanian SC database","Arabic speech command recognition task based on the Arabic SC database","English intent classification task based on the SNIPS database","Language Identification task based on the VoxForge database","English Fake Speech Detection task based on the ASVSpoof database","English emotion recognition task based on the IEMOCAP database","English accent classification task based on the Accent DB database","English sarcasm detection task based on the MUStARD database","English sarcasm detection task based on the MUStARD++ database","English gender identification task based on the VoxCeleb1 database","Audio classification task based on the ESC-50 database","English semantic parsing task based on the STOP database","Voice activity detection task based on the Google Speech Commands v2 and Freesound database"], type="value", label="Task")], 
    gr.Textbox(type="text", label="Output"),
    title=title,
    cache_examples=False,
    description=description,
    article=article,
    examples=examples
    ).launch(debug=True)