Spaces:
Sleeping
Sleeping
File size: 22,857 Bytes
a7c2f52 1da587e a7c2f52 1da587e a7c2f52 1da587e af76ccc 1da587e d84e653 1da587e a7c2f52 1da587e af76ccc 1da587e d84e653 1da587e a7c2f52 1da587e af76ccc 1da587e d84e653 1da587e a7c2f52 1da587e af76ccc 1da587e d84e653 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e af76ccc 1da587e d84e653 1da587e af76ccc 1da587e a7c2f52 1da587e a7c2f52 af76ccc a7c2f52 af76ccc 1da587e a7c2f52 8878265 a7c2f52 1da587e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import gradio as gr
import soundfile
import time
import torch
import scipy.io.wavfile
from espnet2.utils.types import str_or_none
from espnet2.bin.asr_inference import Speech2Text
from subprocess import call
import os
from espnet_model_zoo.downloader import ModelDownloader
# print(a1)
# exit()
# exit()
# tagen = 'kan-bayashi/ljspeech_vits'
# vocoder_tagen = "none"
audio_class_str='0."dog", 1."rooster", 2."pig", 3."cow", 4."frog", 5."cat", 6."hen", 7."insects", 8."sheep", 9."crow", 10."rain", 11."sea waves", 12."crackling fire", 13."crickets", 14."chirping birds", 15."water drops", 16."wind", 17."pouring water", 18."toilet flush", 19."thunderstorm", 20."crying baby", 21."sneezing", 22."clapping", 23."breathing", 24."coughing", 25."footsteps", 26."laughing", 27."brushing teeth", 28."snoring", 29."drinking sipping", 30."door wood knock", 31."mouse click", 32."keyboard typing", 33."door wood creaks", 34."can opening", 35."washing machine", 36."vacuum cleaner", 37."clock alarm", 38."clock tick", 39."glass breaking", 40."helicopter", 41."chainsaw", 42."siren", 43."car horn", 44."engine", 45."train", 46."church bells", 47."airplane", 48."fireworks", 49."hand saw".'
audio_class_arr=audio_class_str.split(", ")
audio_class_arr=[k.split('"')[1] for k in audio_class_arr]
def inference(wav,data):
# import pdb;pdb.set_trace()
with torch.no_grad():
speech, rate = soundfile.read(wav)
if len(speech.shape)==2:
speech=speech[:,0]
if data == "English intent classification and named entity recognition task based on the SLURP database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|ner|> <|SLURP|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
beam_size=1,
ctc_weight=0.0,
penalty=0.1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("in:","")
scenario=intent.split("_")[0]
action=intent.split("_")[1]
ner_text=text.split(" SEP ")[1:-1]
text="INTENT: {scenario: "+scenario+", action: "+action+"}\n"
text=text+"NAMED ENTITIES: {"
for k in ner_text:
slot_name=k.split(" FILL ")[0].replace("sl:","")
slot_val=k.split(" FILL ")[1]
text=text+" "+slot_name+" : "+slot_val+","
text=text+"}"
elif data == "English intent classification task based on the FSC database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|ic|> <|fsc|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("in:","")
action=intent.split("_")[0]
objects=intent.split("_")[1]
location=intent.split("_")[2]
text="INTENT: {action: "+action+", object: "+objects+", location: "+location+"}"
elif data == "English intent classification task based on the SNIPS database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|ic|> <|SNIPS|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("in:","")
text="INTENT: "+intent
elif data == "Dutch speech command recognition task based on the Grabo database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|nl|> <|scr|> <|grabo_scr|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0]
text="SPEECH COMMAND: "+intent
elif data == "English speech command recognition task based on the Google Speech Commands database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|scr|> <|google_scr|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("command:","")
text="SPEECH COMMAND: "+intent
elif data == "Lithuanian speech command recognition task based on the Lithuanian SC database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token= "<|lt|> <|scr|> <|lt_scr|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text
text="SPEECH COMMAND: "+intent
elif data == "Arabic speech command recognition task based on the Arabic SC database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token= "<|ar|> <|scr|> <|ar_scr|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("command:","")
text="SPEECH COMMAND: "+intent
elif data == "Language Identification task based on the VoxForge database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lid_prompt=True,
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
# import pdb;pdb.set_trace()
lang=speech2text.converter.tokenizer.tokenizer.convert_ids_to_tokens(nbests[0][2][0]).replace("|>","").replace("<|","")
text="LANG: "+lang
elif data == "English Fake Speech Detection task based on the ASVSpoof database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|fsd|> <|asvspoof|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("class:","")
text="SPEECH CLASS: "+intent
elif data == "English emotion recognition task based on the IEMOCAP database":
replace_dict={}
replace_dict["em:neu"]="Neutral"
replace_dict["em:ang"]="Angry"
replace_dict["em:sad"]="Sad"
replace_dict["em:hap"]="Happy"
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|er|> <|iemocap|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=replace_dict[text.split(" ")[0]]
text="EMOTION: "+intent
elif data == "English accent classification task based on the Accent DB database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|accent_rec|> <|accentdb|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("accent:","")
text="ACCENT: "+intent
elif data == "English sarcasm detection task based on the MUStARD database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|scd|> <|mustard|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("class:","")
text="SARCASM CLASS: "+intent
elif data == "English sarcasm detection task based on the MUStARD++ database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|scd|> <|mustard_plus_plus|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("class:","")
text="SARCASM CLASS: "+intent
elif data == "English gender identification task based on the VoxCeleb1 database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|gid|> <|voxceleb|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("gender:f","female").replace("gender:m","male")
text="GENDER: "+intent
elif data == "Audio classification task based on the ESC-50 database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|audio|> <|auc|> <|esc50|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1]
intent=text.split(" ")[0].replace("audio_class:","")
text="AUDIO EVENT CLASS: "+audio_class_arr[int(intent)]
elif data == "English semantic parsing task based on the STOP database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lang_prompt_token="<|en|> <|sp|> <|STOP|>",
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
penalty=0.1,
nbest=1
)
nbests = speech2text(speech)
text, *_ = nbests[0]
text=text.split("|>")[-1].replace("_STOP","")
text="SEMANTIC PARSE SEQUENCE: "+text
elif data == "Voice activity detection task based on the Google Speech Commands v2 and Freesound database":
speech2text = Speech2Text.from_pretrained(
asr_train_config="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/config.yaml",
asr_model_file="UniverSLU-17-Task-Specifier/exp/asr_train_asr_whisper_full_correct_specaug2_copy_raw_en_whisper_multilingual/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
lid_prompt=True,
prompt_token_file="UniverSLU-17-Task-Specifier/add_tokens-Copy1.txt",
ctc_weight=0.0,
beam_size=1,
nbest=1
)
nbests = speech2text(speech)
lang=speech2text.converter.tokenizer.tokenizer.convert_ids_to_tokens(nbests[0][2][0])
if lang=="<|nospeech|>":
text="VAD: no speech"
else:
text="VAD: speech"
# if lang == "chinese":
# wav = text2speechch(text)["wav"]
# scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy())
# if lang == "japanese":
# wav = text2speechjp(text)["wav"]
# scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy())
return text
title = "UniverSLU"
description = "Gradio demo for UniverSLU Task Specifier (https://huggingface.co/espnet/UniverSLU-17-Task-Specifier). UniverSLU-17 Task Specifier is a Multi-task Spoken Language Understanding model from CMU WAVLab. It adapts Whisper to additional tasks using single-token task specifiers. To use it, simply record your audio or click one of the examples to load them. More details about the SLU tasks that the model is trained on and it's performance on these tasks can be found in our paper: https://aclanthology.org/2024.naacl-long.151/"
article = "<p style='text-align: center'><a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"
examples=[['audio_slurp_ner.flac',"English intent classification and named entity recognition task based on the SLURP database"],['audio_fsc.wav',"English intent classification task based on the FSC database"],['audio_grabo.wav',"Dutch speech command recognition task based on the Grabo database"],['audio_english_scr.wav',"English speech command recognition task based on the Google Speech Commands database"],['audio_lt_scr.wav',"Lithuanian speech command recognition task based on the Lithuanian SC database"],['audio_ar_scr.wav',"Arabic speech command recognition task based on the Arabic SC database"],['audio_snips.wav',"English intent classification task based on the SNIPS database"],['audio_lid.wav',"Language Identification task based on the VoxForge database"],['audio_fsd.wav',"English Fake Speech Detection task based on the ASVSpoof database"],['audio_er.wav',"English emotion recognition task based on the IEMOCAP database"],['audio_acc.wav',"English accent classification task based on the Accent DB database"],['audio_mustard.wav',"English sarcasm detection task based on the MUStARD database"],['audio_mustard_plus.wav',"English sarcasm detection task based on the MUStARD++ database"],['audio_voxceleb1.wav',"English gender identification task based on the VoxCeleb1 database"],['audio_esc50.wav',"Audio classification task based on the ESC-50 database"],['audio_stop.wav',"English semantic parsing task based on the STOP database"],['audio_freesound.wav',"Voice activity detection task based on the Google Speech Commands v2 and Freesound database"]]
# gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language")
gr.Interface(
inference,
[gr.Audio(label="input audio",sources=["microphone"],type="filepath"),gr.Radio(choices=["English intent classification and named entity recognition task based on the SLURP database","English intent classification task based on the FSC database","Dutch speech command recognition task based on the Grabo database","English speech command recognition task based on the Google Speech Commands database","Lithuanian speech command recognition task based on the Lithuanian SC database","Arabic speech command recognition task based on the Arabic SC database","English intent classification task based on the SNIPS database","Language Identification task based on the VoxForge database","English Fake Speech Detection task based on the ASVSpoof database","English emotion recognition task based on the IEMOCAP database","English accent classification task based on the Accent DB database","English sarcasm detection task based on the MUStARD database","English sarcasm detection task based on the MUStARD++ database","English gender identification task based on the VoxCeleb1 database","Audio classification task based on the ESC-50 database","English semantic parsing task based on the STOP database","Voice activity detection task based on the Google Speech Commands v2 and Freesound database"], type="value", label="Task")],
gr.Textbox(type="text", label="Output"),
title=title,
cache_examples=False,
description=description,
article=article,
examples=examples
).launch(debug=True) |