Spaces:
Sleeping
Sleeping
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,602 +1,142 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
import gradio as gr
|
5 |
-
import requests
|
6 |
-
from duckduckgo_search import DDGS
|
7 |
-
from typing import List
|
8 |
-
from pydantic import BaseModel, Field
|
9 |
-
from tempfile import NamedTemporaryFile
|
10 |
-
from langchain_community.vectorstores import FAISS
|
11 |
-
from langchain_core.vectorstores import VectorStore
|
12 |
-
from langchain_core.documents import Document
|
13 |
-
from langchain_community.document_loaders import PyPDFLoader
|
14 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
-
from llama_parse import LlamaParse
|
16 |
-
from langchain_core.documents import Document
|
17 |
from huggingface_hub import InferenceClient
|
18 |
-
import
|
19 |
-
import
|
20 |
-
import
|
|
|
|
|
|
|
21 |
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
25 |
|
26 |
# Environment variables and configurations
|
27 |
-
|
28 |
-
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
29 |
-
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID")
|
30 |
-
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
|
31 |
-
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/"
|
32 |
-
|
33 |
-
print(f"ACCOUNT_ID: {ACCOUNT_ID}")
|
34 |
-
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
35 |
-
|
36 |
MODELS = [
|
37 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
38 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
39 |
-
"
|
40 |
-
"
|
|
|
|
|
|
|
41 |
]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
language="en",
|
50 |
-
)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
try:
|
59 |
-
|
60 |
-
|
|
|
61 |
except Exception as e:
|
62 |
-
|
63 |
-
|
64 |
-
loader = PyPDFLoader(file.name)
|
65 |
-
return loader.load_and_split()
|
66 |
-
else:
|
67 |
-
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
68 |
|
|
|
69 |
def get_embeddings():
|
70 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
71 |
|
72 |
-
|
73 |
-
DOCUMENTS_FILE = "uploaded_documents.json"
|
74 |
-
|
75 |
-
def load_documents():
|
76 |
-
if os.path.exists(DOCUMENTS_FILE):
|
77 |
-
with open(DOCUMENTS_FILE, "r") as f:
|
78 |
-
return json.load(f)
|
79 |
-
return []
|
80 |
-
|
81 |
-
def save_documents(documents):
|
82 |
-
with open(DOCUMENTS_FILE, "w") as f:
|
83 |
-
json.dump(documents, f)
|
84 |
-
|
85 |
-
# Replace the global uploaded_documents with this
|
86 |
-
uploaded_documents = load_documents()
|
87 |
-
|
88 |
-
# Modify the update_vectors function
|
89 |
-
def update_vectors(files, parser):
|
90 |
-
global uploaded_documents
|
91 |
-
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
92 |
-
|
93 |
-
if not files:
|
94 |
-
logging.warning("No files provided for update_vectors")
|
95 |
-
return "Please upload at least one PDF file.", display_documents()
|
96 |
-
|
97 |
-
embed = get_embeddings()
|
98 |
-
total_chunks = 0
|
99 |
-
|
100 |
-
all_data = []
|
101 |
-
for file in files:
|
102 |
-
logging.info(f"Processing file: {file.name}")
|
103 |
-
try:
|
104 |
-
data = load_document(file, parser)
|
105 |
-
if not data:
|
106 |
-
logging.warning(f"No chunks loaded from {file.name}")
|
107 |
-
continue
|
108 |
-
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
109 |
-
all_data.extend(data)
|
110 |
-
total_chunks += len(data)
|
111 |
-
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
112 |
-
uploaded_documents.append({"name": file.name, "selected": True})
|
113 |
-
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
114 |
-
else:
|
115 |
-
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
116 |
-
except Exception as e:
|
117 |
-
logging.error(f"Error processing file {file.name}: {str(e)}")
|
118 |
-
|
119 |
-
logging.info(f"Total chunks processed: {total_chunks}")
|
120 |
-
|
121 |
-
if not all_data:
|
122 |
-
logging.warning("No valid data extracted from uploaded files")
|
123 |
-
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents()
|
124 |
-
|
125 |
-
try:
|
126 |
-
if os.path.exists("faiss_database"):
|
127 |
-
logging.info("Updating existing FAISS database")
|
128 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
129 |
-
database.add_documents(all_data)
|
130 |
-
else:
|
131 |
-
logging.info("Creating new FAISS database")
|
132 |
-
database = FAISS.from_documents(all_data, embed)
|
133 |
-
|
134 |
-
database.save_local("faiss_database")
|
135 |
-
logging.info("FAISS database saved")
|
136 |
-
except Exception as e:
|
137 |
-
logging.error(f"Error updating FAISS database: {str(e)}")
|
138 |
-
return f"Error updating vector store: {str(e)}", display_documents()
|
139 |
-
|
140 |
-
# Save the updated list of documents
|
141 |
-
save_documents(uploaded_documents)
|
142 |
-
|
143 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents()
|
144 |
-
|
145 |
-
def delete_documents(selected_docs):
|
146 |
-
global uploaded_documents
|
147 |
-
|
148 |
-
if not selected_docs:
|
149 |
-
return "No documents selected for deletion.", display_documents()
|
150 |
-
|
151 |
embed = get_embeddings()
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
if
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
# Print debugging information
|
163 |
-
logging.info(f"Total documents before deletion: {len(database.docstore._dict)}")
|
164 |
-
logging.info(f"Documents to keep: {len(docs_to_keep)}")
|
165 |
-
logging.info(f"Documents to delete: {len(deleted_docs)}")
|
166 |
-
|
167 |
-
if not docs_to_keep:
|
168 |
-
# If all documents are deleted, remove the FAISS database directory
|
169 |
-
if os.path.exists("faiss_database"):
|
170 |
-
shutil.rmtree("faiss_database")
|
171 |
-
logging.info("All documents deleted. Removed FAISS database directory.")
|
172 |
-
else:
|
173 |
-
# Create new FAISS index with remaining documents
|
174 |
-
new_database = FAISS.from_documents(docs_to_keep, embed)
|
175 |
-
new_database.save_local("faiss_database")
|
176 |
-
logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.")
|
177 |
-
|
178 |
-
# Update uploaded_documents list
|
179 |
-
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs]
|
180 |
-
save_documents(uploaded_documents)
|
181 |
-
|
182 |
-
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents()
|
183 |
-
|
184 |
-
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
|
185 |
-
print(f"Starting generate_chunked_response with {num_calls} calls")
|
186 |
-
full_response = ""
|
187 |
-
messages = [{"role": "user", "content": prompt}]
|
188 |
-
|
189 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
190 |
-
# Cloudflare API
|
191 |
-
for i in range(num_calls):
|
192 |
-
print(f"Starting Cloudflare API call {i+1}")
|
193 |
-
if should_stop:
|
194 |
-
print("Stop clicked, breaking loop")
|
195 |
-
break
|
196 |
-
try:
|
197 |
-
response = requests.post(
|
198 |
-
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct",
|
199 |
-
headers={"Authorization": f"Bearer {API_TOKEN}"},
|
200 |
-
json={
|
201 |
-
"stream": true,
|
202 |
-
"messages": [
|
203 |
-
{"role": "system", "content": "You are a friendly assistant"},
|
204 |
-
{"role": "user", "content": prompt}
|
205 |
-
],
|
206 |
-
"max_tokens": max_tokens,
|
207 |
-
"temperature": temperature
|
208 |
-
},
|
209 |
-
stream=true
|
210 |
-
)
|
211 |
-
|
212 |
-
for line in response.iter_lines():
|
213 |
-
if should_stop:
|
214 |
-
print("Stop clicked during streaming, breaking")
|
215 |
-
break
|
216 |
-
if line:
|
217 |
-
try:
|
218 |
-
json_data = json.loads(line.decode('utf-8').split('data: ')[1])
|
219 |
-
chunk = json_data['response']
|
220 |
-
full_response += chunk
|
221 |
-
except json.JSONDecodeError:
|
222 |
-
continue
|
223 |
-
print(f"Cloudflare API call {i+1} completed")
|
224 |
-
except Exception as e:
|
225 |
-
print(f"Error in generating response from Cloudflare: {str(e)}")
|
226 |
-
else:
|
227 |
-
# Original Hugging Face API logic
|
228 |
-
client = InferenceClient(model, token=huggingface_token)
|
229 |
-
|
230 |
-
for i in range(num_calls):
|
231 |
-
print(f"Starting Hugging Face API call {i+1}")
|
232 |
-
if should_stop:
|
233 |
-
print("Stop clicked, breaking loop")
|
234 |
-
break
|
235 |
-
try:
|
236 |
-
for message in client.chat_completion(
|
237 |
-
messages=messages,
|
238 |
-
max_tokens=max_tokens,
|
239 |
-
temperature=temperature,
|
240 |
-
stream=True,
|
241 |
-
):
|
242 |
-
if should_stop:
|
243 |
-
print("Stop clicked during streaming, breaking")
|
244 |
-
break
|
245 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
246 |
-
chunk = message.choices[0].delta.content
|
247 |
-
full_response += chunk
|
248 |
-
print(f"Hugging Face API call {i+1} completed")
|
249 |
-
except Exception as e:
|
250 |
-
print(f"Error in generating response from Hugging Face: {str(e)}")
|
251 |
-
|
252 |
-
# Clean up the response
|
253 |
-
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL)
|
254 |
-
clean_response = clean_response.replace("Using the following context:", "").strip()
|
255 |
-
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip()
|
256 |
-
|
257 |
-
# Remove duplicate paragraphs and sentences
|
258 |
-
paragraphs = clean_response.split('\n\n')
|
259 |
-
unique_paragraphs = []
|
260 |
-
for paragraph in paragraphs:
|
261 |
-
if paragraph not in unique_paragraphs:
|
262 |
-
sentences = paragraph.split('. ')
|
263 |
-
unique_sentences = []
|
264 |
-
for sentence in sentences:
|
265 |
-
if sentence not in unique_sentences:
|
266 |
-
unique_sentences.append(sentence)
|
267 |
-
unique_paragraphs.append('. '.join(unique_sentences))
|
268 |
-
|
269 |
-
final_response = '\n\n'.join(unique_paragraphs)
|
270 |
-
|
271 |
-
print(f"Final clean response: {final_response[:100]}...")
|
272 |
-
return final_response
|
273 |
-
|
274 |
-
def duckduckgo_search(query):
|
275 |
-
with DDGS() as ddgs:
|
276 |
-
results = ddgs.text(query, max_results=5)
|
277 |
-
return results
|
278 |
-
|
279 |
-
class CitingSources(BaseModel):
|
280 |
-
sources: List[str] = Field(
|
281 |
-
...,
|
282 |
-
description="List of sources to cite. Should be an URL of the source."
|
283 |
-
)
|
284 |
-
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls):
|
285 |
-
if not message.strip():
|
286 |
-
return "", history
|
287 |
-
|
288 |
-
history = history + [(message, "")]
|
289 |
-
|
290 |
-
try:
|
291 |
-
for response in respond(message, history, model, temperature, num_calls, use_web_search):
|
292 |
-
history[-1] = (message, response)
|
293 |
-
yield history
|
294 |
-
except gr.CancelledError:
|
295 |
-
yield history
|
296 |
-
except Exception as e:
|
297 |
-
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
298 |
-
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
299 |
-
yield history
|
300 |
|
301 |
-
def
|
302 |
-
|
303 |
-
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key):
|
311 |
-
logging.info(f"User Query: {message}")
|
312 |
-
logging.info(f"Model Used: {model}")
|
313 |
-
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
314 |
-
logging.info(f"Selected Documents: {selected_docs}")
|
315 |
-
logging.info(f"Instruction Key: {instruction_key}")
|
316 |
-
|
317 |
-
try:
|
318 |
-
if instruction_key and instruction_key != "None":
|
319 |
-
# This is a summary generation request
|
320 |
-
instruction = INSTRUCTION_PROMPTS[instruction_key]
|
321 |
-
context_str = get_context_for_summary(selected_docs)
|
322 |
-
message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary."
|
323 |
-
use_web_search = False # Ensure we use PDF search for summaries
|
324 |
-
|
325 |
-
if use_web_search:
|
326 |
-
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
327 |
-
response = f"{main_content}\n\n{sources}"
|
328 |
-
first_line = response.split('\n')[0] if response else ''
|
329 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
330 |
-
yield response
|
331 |
-
else:
|
332 |
-
embed = get_embeddings()
|
333 |
-
if os.path.exists("faiss_database"):
|
334 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
335 |
-
retriever = database.as_retriever()
|
336 |
-
|
337 |
-
# Filter relevant documents based on user selection
|
338 |
-
all_relevant_docs = retriever.get_relevant_documents(message)
|
339 |
-
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
340 |
-
|
341 |
-
if not relevant_docs:
|
342 |
-
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
343 |
-
return
|
344 |
-
|
345 |
-
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
346 |
-
else:
|
347 |
-
context_str = "No documents available."
|
348 |
-
yield "No documents available. Please upload PDF documents to answer questions."
|
349 |
-
return
|
350 |
-
|
351 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
352 |
-
# Use Cloudflare API
|
353 |
-
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
354 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
355 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
356 |
-
yield partial_response
|
357 |
-
else:
|
358 |
-
# Use Hugging Face API
|
359 |
-
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
360 |
-
first_line = partial_response.split('\n')[0] if partial_response else ''
|
361 |
-
# logging.info(f"Generated Response (first line): {first_line}")
|
362 |
-
yield partial_response
|
363 |
-
|
364 |
-
except Exception as e:
|
365 |
-
logging.error(f"Error with {model}: {str(e)}")
|
366 |
-
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
367 |
-
logging.info("Falling back to Mistral model due to Phi-3 error")
|
368 |
-
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
369 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key)
|
370 |
-
else:
|
371 |
-
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
372 |
-
|
373 |
-
logging.basicConfig(level=logging.DEBUG)
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
if os.path.exists("faiss_database"):
|
378 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
379 |
-
retriever = database.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 most relevant chunks
|
380 |
-
|
381 |
-
# Create a generic query that covers common financial summary topics
|
382 |
-
generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights"
|
383 |
-
|
384 |
-
relevant_docs = retriever.get_relevant_documents(generic_query)
|
385 |
-
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
386 |
-
|
387 |
-
if not filtered_docs:
|
388 |
-
return "No relevant information found in the selected documents for summary generation."
|
389 |
-
|
390 |
-
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
391 |
-
return context_str
|
392 |
-
else:
|
393 |
-
return "No documents available for summary generation."
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
399 |
-
retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks
|
400 |
-
|
401 |
relevant_docs = retriever.get_relevant_documents(query)
|
402 |
-
|
403 |
-
|
404 |
-
if not filtered_docs:
|
405 |
-
return "No relevant information found in the selected documents for the given query."
|
406 |
-
|
407 |
-
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
408 |
-
return context_str
|
409 |
else:
|
410 |
-
|
411 |
|
412 |
-
|
413 |
-
headers = {
|
414 |
-
"Authorization": f"Bearer {API_TOKEN}",
|
415 |
-
"Content-Type": "application/json"
|
416 |
-
}
|
417 |
-
model = "@cf/meta/llama-3.1-8b-instruct"
|
418 |
|
419 |
-
|
420 |
-
instruction = f"""Using the following context from the PDF documents:
|
421 |
{context}
|
422 |
-
Write a detailed and complete response that answers the following user question: '{query}'"""
|
423 |
-
else: # web search
|
424 |
-
instruction = f"""Using the following context:
|
425 |
-
{context}
|
426 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
427 |
-
After writing the document, please provide a list of sources used in your response."""
|
428 |
-
|
429 |
-
inputs = [
|
430 |
-
{"role": "system", "content": instruction},
|
431 |
-
{"role": "user", "content": query}
|
432 |
-
]
|
433 |
|
434 |
-
|
435 |
-
"messages": inputs,
|
436 |
-
"stream": True,
|
437 |
-
"temperature": temperature,
|
438 |
-
"max_tokens": 32000
|
439 |
-
}
|
440 |
|
441 |
-
|
442 |
-
|
443 |
try:
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}")
|
459 |
-
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later."
|
460 |
except Exception as e:
|
461 |
-
|
462 |
-
yield f"
|
463 |
-
|
464 |
-
if not full_response:
|
465 |
-
yield "I apologize, but I couldn't generate a response at this time. Please try again later."
|
466 |
-
|
467 |
-
def create_web_search_vectors(search_results):
|
468 |
-
embed = get_embeddings()
|
469 |
-
|
470 |
-
documents = []
|
471 |
-
for result in search_results:
|
472 |
-
if 'body' in result:
|
473 |
-
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
|
474 |
-
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
475 |
-
|
476 |
-
return FAISS.from_documents(documents, embed)
|
477 |
-
|
478 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
|
479 |
-
search_results = duckduckgo_search(query)
|
480 |
-
web_search_database = create_web_search_vectors(search_results)
|
481 |
-
|
482 |
-
if not web_search_database:
|
483 |
-
yield "No web search results available. Please try again.", ""
|
484 |
-
return
|
485 |
-
|
486 |
-
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
487 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
488 |
-
|
489 |
-
context = "\n".join([doc.page_content for doc in relevant_docs])
|
490 |
-
|
491 |
-
prompt = f"""Using the following context from web search results:
|
492 |
-
{context}
|
493 |
-
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
494 |
-
After writing the document, please provide a list of sources used in your response."""
|
495 |
-
|
496 |
-
if model == "@cf/meta/llama-3.1-8b-instruct":
|
497 |
-
# Use Cloudflare API
|
498 |
-
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"):
|
499 |
-
yield response, "" # Yield streaming response without sources
|
500 |
-
else:
|
501 |
-
# Use Hugging Face API
|
502 |
-
client = InferenceClient(model, token=huggingface_token)
|
503 |
-
|
504 |
-
main_content = ""
|
505 |
-
for i in range(num_calls):
|
506 |
-
for message in client.chat_completion(
|
507 |
-
messages=[{"role": "user", "content": prompt}],
|
508 |
-
max_tokens=10000,
|
509 |
-
temperature=temperature,
|
510 |
-
stream=True,
|
511 |
-
):
|
512 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
513 |
-
chunk = message.choices[0].delta.content
|
514 |
-
main_content += chunk
|
515 |
-
yield main_content, "" # Yield partial main content without sources
|
516 |
|
|
|
|
|
|
|
517 |
|
518 |
-
|
519 |
-
"Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.",
|
520 |
-
"Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.",
|
521 |
-
"Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.",
|
522 |
-
# Add more instruction prompts as needed
|
523 |
-
}
|
524 |
-
|
525 |
-
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
526 |
-
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
527 |
-
|
528 |
-
embed = get_embeddings()
|
529 |
-
if os.path.exists("faiss_database"):
|
530 |
-
logging.info("Loading FAISS database")
|
531 |
-
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
532 |
-
else:
|
533 |
-
logging.warning("No FAISS database found")
|
534 |
-
yield "No documents available. Please upload PDF documents to answer questions."
|
535 |
-
return
|
536 |
-
|
537 |
-
# Pre-filter the documents
|
538 |
-
filtered_docs = []
|
539 |
-
for doc_id, doc in database.docstore._dict.items():
|
540 |
-
if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs:
|
541 |
-
filtered_docs.append(doc)
|
542 |
-
|
543 |
-
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}")
|
544 |
-
|
545 |
-
if not filtered_docs:
|
546 |
-
logging.warning(f"No documents found for the selected sources: {selected_docs}")
|
547 |
-
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
548 |
-
return
|
549 |
-
|
550 |
-
# Create a new FAISS index with only the selected documents
|
551 |
-
filtered_db = FAISS.from_documents(filtered_docs, embed)
|
552 |
-
|
553 |
-
retriever = filtered_db.as_retriever(search_kwargs={"k": 10})
|
554 |
-
logging.info(f"Retrieving relevant documents for query: {query}")
|
555 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
556 |
-
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
557 |
-
|
558 |
-
for doc in relevant_docs:
|
559 |
-
logging.info(f"Document source: {doc.metadata['source']}")
|
560 |
-
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
561 |
-
|
562 |
-
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
563 |
-
logging.info(f"Total context length: {len(context_str)}")
|
564 |
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
# Use Hugging Face API
|
573 |
-
prompt = f"""Using the following context from the PDF documents:
|
574 |
-
{context_str}
|
575 |
-
Write a detailed and complete response that answers the following user question: '{query}'"""
|
576 |
-
|
577 |
-
client = InferenceClient(model, token=huggingface_token)
|
578 |
-
|
579 |
-
response = ""
|
580 |
-
for i in range(num_calls):
|
581 |
-
logging.info(f"API call {i+1}/{num_calls}")
|
582 |
-
for message in client.chat_completion(
|
583 |
-
messages=[{"role": "user", "content": prompt}],
|
584 |
-
max_tokens=10000,
|
585 |
-
temperature=temperature,
|
586 |
-
stream=True,
|
587 |
-
):
|
588 |
-
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
|
589 |
-
chunk = message.choices[0].delta.content
|
590 |
-
response += chunk
|
591 |
-
yield response # Yield partial response
|
592 |
-
|
593 |
-
logging.info("Finished generating response")
|
594 |
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
|
|
|
|
|
|
|
|
600 |
|
601 |
css = """
|
602 |
/* Fine-tune chatbox size */
|
@@ -610,127 +150,54 @@ css = """
|
|
610 |
}
|
611 |
"""
|
612 |
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
)
|
621 |
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
return
|
636 |
-
|
637 |
-
# Define the checkbox outside the demo block
|
638 |
-
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
639 |
-
|
640 |
-
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
641 |
-
|
642 |
-
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
643 |
-
|
644 |
-
instruction_choices = ["None"] + list(INSTRUCTION_PROMPTS.keys())
|
645 |
-
|
646 |
-
demo = gr.ChatInterface(
|
647 |
-
respond,
|
648 |
-
additional_inputs=[
|
649 |
-
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
650 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
651 |
-
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
652 |
-
use_web_search,
|
653 |
-
document_selector,
|
654 |
-
gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None")
|
655 |
-
],
|
656 |
-
title="AI-powered Web Search and PDF Chat Assistant",
|
657 |
-
description="Chat with your PDFs, use web search to answer questions, or generate summaries. Select an Entity Type for Summary to generate a specific summary.",
|
658 |
-
theme=gr.themes.Soft(
|
659 |
-
primary_hue="orange",
|
660 |
-
secondary_hue="amber",
|
661 |
-
neutral_hue="gray",
|
662 |
-
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
|
663 |
-
).set(
|
664 |
-
body_background_fill_dark="#0c0505",
|
665 |
-
block_background_fill_dark="#0c0505",
|
666 |
-
block_border_width="1px",
|
667 |
-
block_title_background_fill_dark="#1b0f0f",
|
668 |
-
input_background_fill_dark="#140b0b",
|
669 |
-
button_secondary_background_fill_dark="#140b0b",
|
670 |
-
border_color_accent_dark="#1b0f0f",
|
671 |
-
border_color_primary_dark="#1b0f0f",
|
672 |
-
background_fill_secondary_dark="#0c0505",
|
673 |
-
color_accent_soft_dark="transparent",
|
674 |
-
code_background_fill_dark="#140b0b"
|
675 |
-
),
|
676 |
-
css=css,
|
677 |
-
examples=[
|
678 |
-
["Tell me about the contents of the uploaded PDFs."],
|
679 |
-
["What are the main topics discussed in the documents?"],
|
680 |
-
["Can you summarize the key points from the PDFs?"]
|
681 |
-
],
|
682 |
-
cache_examples=False,
|
683 |
-
analytics_enabled=False,
|
684 |
-
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
685 |
-
chatbot = gr.Chatbot(
|
686 |
-
show_copy_button=True,
|
687 |
-
likeable=True,
|
688 |
-
layout="bubble",
|
689 |
-
height=400,
|
690 |
-
value=initial_conversation()
|
691 |
-
)
|
692 |
-
)
|
693 |
-
|
694 |
-
# Add file upload functionality
|
695 |
-
with demo:
|
696 |
-
gr.Markdown("## Upload and Manage PDF Documents")
|
697 |
-
|
698 |
-
with gr.Row():
|
699 |
-
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
700 |
-
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse")
|
701 |
-
update_button = gr.Button("Upload Document")
|
702 |
-
refresh_button = gr.Button("Refresh Document List")
|
703 |
-
|
704 |
-
update_output = gr.Textbox(label="Update Status")
|
705 |
-
delete_button = gr.Button("Delete Selected Documents")
|
706 |
-
|
707 |
-
# Update both the output text and the document selector
|
708 |
-
update_button.click(update_vectors,
|
709 |
-
inputs=[file_input, parser_dropdown],
|
710 |
-
outputs=[update_output, document_selector])
|
711 |
-
|
712 |
-
# Add the refresh button functionality
|
713 |
-
refresh_button.click(refresh_documents,
|
714 |
-
inputs=[],
|
715 |
-
outputs=[document_selector])
|
716 |
-
|
717 |
-
# Add the delete button functionality
|
718 |
-
delete_button.click(delete_documents,
|
719 |
-
inputs=[document_selector],
|
720 |
-
outputs=[update_output, document_selector])
|
721 |
-
|
722 |
-
gr.Markdown(
|
723 |
-
"""
|
724 |
-
## How to use
|
725 |
-
1. Upload PDF documents using the file input at the top.
|
726 |
-
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
727 |
-
3. Select the documents you want to query using the checkboxes.
|
728 |
-
4. Ask questions in the chat interface.
|
729 |
-
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
730 |
-
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
731 |
-
7. Use the provided examples or ask your own questions.
|
732 |
-
"""
|
733 |
-
)
|
734 |
|
735 |
if __name__ == "__main__":
|
|
|
736 |
demo.launch(share=True)
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
+
import asyncio
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from huggingface_hub import InferenceClient
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.schema import Document
|
9 |
+
from duckduckgo_search import DDGS
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from functools import lru_cache
|
12 |
|
13 |
+
# Load environment variables
|
14 |
+
load_dotenv()
|
15 |
|
16 |
+
# Configure logging
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
|
20 |
# Environment variables and configurations
|
21 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
MODELS = [
|
23 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
24 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
25 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
26 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
27 |
+
"meta-llama/Meta-Llama-3.1-70B-Instruct",
|
28 |
+
"google/gemma-2-9b-it",
|
29 |
+
"google/gemma-2-27b-it"
|
30 |
]
|
31 |
|
32 |
+
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
|
33 |
+
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
|
34 |
+
Providing comprehensive and accurate information based on web search results is essential.
|
35 |
+
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
|
36 |
+
Please ensure that your response is well-structured and factual.
|
37 |
+
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
|
|
|
|
|
38 |
|
39 |
+
class WebSearcher:
|
40 |
+
def __init__(self):
|
41 |
+
self.ddgs = DDGS()
|
42 |
+
|
43 |
+
@lru_cache(maxsize=100)
|
44 |
+
def search(self, query, max_results=5):
|
45 |
try:
|
46 |
+
results = list(self.ddgs.text(query, max_results=max_results))
|
47 |
+
logger.info(f"Search completed for query: {query}")
|
48 |
+
return results
|
49 |
except Exception as e:
|
50 |
+
logger.error(f"Error during DuckDuckGo search: {str(e)}")
|
51 |
+
return []
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
@lru_cache(maxsize=1)
|
54 |
def get_embeddings():
|
55 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
56 |
|
57 |
+
def create_web_search_vectors(search_results):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
embed = get_embeddings()
|
59 |
+
documents = [
|
60 |
+
Document(
|
61 |
+
page_content=f"{result['title']}\n{result['body']}\nSource: {result['href']}",
|
62 |
+
metadata={"source": result['href']}
|
63 |
+
)
|
64 |
+
for result in search_results if 'body' in result
|
65 |
+
]
|
66 |
+
logger.info(f"Created vectors for {len(documents)} search results.")
|
67 |
+
return FAISS.from_documents(documents, embed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
async def get_response_with_search(query, system_prompt, model, use_embeddings, num_calls=3, temperature=0.2):
|
70 |
+
searcher = WebSearcher()
|
71 |
+
search_results = searcher.search(query)
|
72 |
|
73 |
+
if not search_results:
|
74 |
+
logger.warning(f"No web search results found for query: {query}")
|
75 |
+
yield "No web search results available. Please try again.", ""
|
76 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
sources = [result['href'] for result in search_results if 'href' in result]
|
79 |
+
source_list_str = "\n".join(sources)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
if use_embeddings:
|
82 |
+
web_search_database = create_web_search_vectors(search_results)
|
83 |
+
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
|
|
|
|
|
|
84 |
relevant_docs = retriever.get_relevant_documents(query)
|
85 |
+
context = "\n".join([doc.page_content for doc in relevant_docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
else:
|
87 |
+
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
88 |
|
89 |
+
logger.info(f"Context created for query: {query}")
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
user_message = f"""Using the following context from web search results:
|
|
|
92 |
{context}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
async with InferenceClient(model, token=HUGGINGFACE_TOKEN) as client:
|
97 |
+
full_response = ""
|
98 |
try:
|
99 |
+
for _ in range(num_calls):
|
100 |
+
async for response in client.chat_completion_stream(
|
101 |
+
messages=[
|
102 |
+
{"role": "system", "content": system_prompt},
|
103 |
+
{"role": "user", "content": user_message}
|
104 |
+
],
|
105 |
+
max_tokens=6000,
|
106 |
+
temperature=temperature,
|
107 |
+
top_p=0.8,
|
108 |
+
):
|
109 |
+
if "content" in response:
|
110 |
+
chunk = response["content"]
|
111 |
+
full_response += chunk
|
112 |
+
yield full_response, ""
|
|
|
|
|
113 |
except Exception as e:
|
114 |
+
logger.error(f"Error in get_response_with_search: {str(e)}")
|
115 |
+
yield f"An error occurred while processing your request: {str(e)}", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
if not full_response:
|
118 |
+
logger.warning("No response generated from the model")
|
119 |
+
yield "No response generated from the model.", ""
|
120 |
|
121 |
+
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
124 |
+
logger.info(f"User Query: {message}")
|
125 |
+
logger.info(f"Model Used: {model}")
|
126 |
+
logger.info(f"Temperature: {temperature}")
|
127 |
+
logger.info(f"Number of API Calls: {num_calls}")
|
128 |
+
logger.info(f"Use Embeddings: {use_embeddings}")
|
129 |
+
logger.info(f"System Prompt: {system_prompt}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
try:
|
132 |
+
async for main_content, sources in get_response_with_search(message, system_prompt, model, use_embeddings, num_calls=num_calls, temperature=temperature):
|
133 |
+
yield main_content
|
134 |
+
except asyncio.CancelledError:
|
135 |
+
logger.warning("The operation was cancelled.")
|
136 |
+
yield "The operation was cancelled. Please try again."
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Error in respond function: {str(e)}")
|
139 |
+
yield f"An error occurred: {str(e)}"
|
140 |
|
141 |
css = """
|
142 |
/* Fine-tune chatbox size */
|
|
|
150 |
}
|
151 |
"""
|
152 |
|
153 |
+
def create_gradio_interface():
|
154 |
+
custom_placeholder = "Enter your question here for web search."
|
155 |
+
|
156 |
+
demo = gr.ChatInterface(
|
157 |
+
fn=respond,
|
158 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
159 |
+
additional_inputs=[
|
160 |
+
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
|
161 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
162 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
163 |
+
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
164 |
+
gr.Checkbox(label="Use Embeddings", value=False),
|
165 |
+
],
|
166 |
+
title="AI-powered Web Search Assistant",
|
167 |
+
description="Use web search to answer questions or generate summaries.",
|
168 |
+
theme=gr.Theme.from_hub("allenai/gradio-theme"),
|
169 |
+
css=css,
|
170 |
+
examples=[
|
171 |
+
["What are the latest developments in artificial intelligence?"],
|
172 |
+
["Explain the concept of quantum computing."],
|
173 |
+
["What are the environmental impacts of renewable energy?"]
|
174 |
+
],
|
175 |
+
cache_examples=False,
|
176 |
+
analytics_enabled=False,
|
177 |
+
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
178 |
+
chatbot=gr.Chatbot(
|
179 |
+
show_copy_button=True,
|
180 |
+
likeable=True,
|
181 |
+
layout="bubble",
|
182 |
+
height=400,
|
183 |
+
)
|
184 |
)
|
185 |
|
186 |
+
with demo:
|
187 |
+
gr.Markdown("""
|
188 |
+
## How to use
|
189 |
+
1. Enter your question in the chat interface.
|
190 |
+
2. Optionally, modify the System Prompt to guide the AI's behavior.
|
191 |
+
3. Select the model you want to use from the dropdown.
|
192 |
+
4. Adjust the Temperature to control the randomness of the response.
|
193 |
+
5. Set the Number of API Calls to determine how many times the model will be queried.
|
194 |
+
6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
|
195 |
+
7. Press Enter or click the submit button to get your answer.
|
196 |
+
8. Use the provided examples or ask your own questions.
|
197 |
+
""")
|
198 |
+
|
199 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
+
demo = create_gradio_interface()
|
203 |
demo.launch(share=True)
|