Spaces:
Sleeping
Sleeping
Shreyas094
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,8 @@ print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
|
33 |
MODELS = [
|
34 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
35 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
36 |
-
"@cf/meta/llama-3.1-8b-instruct"
|
|
|
37 |
]
|
38 |
|
39 |
# Initialize LlamaParse
|
@@ -63,32 +64,60 @@ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[
|
|
63 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
64 |
|
65 |
def get_embeddings():
|
66 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/
|
67 |
|
68 |
def update_vectors(files, parser):
|
|
|
|
|
|
|
69 |
if not files:
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
embed = get_embeddings()
|
73 |
total_chunks = 0
|
74 |
|
75 |
all_data = []
|
76 |
for file in files:
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
if os.path.exists("faiss_database"):
|
|
|
82 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
83 |
database.add_documents(all_data)
|
84 |
else:
|
|
|
85 |
database = FAISS.from_documents(all_data, embed)
|
86 |
|
87 |
database.save_local("faiss_database")
|
|
|
88 |
|
89 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
def generate_chunked_response(prompt, model, max_tokens=
|
92 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
93 |
full_response = ""
|
94 |
messages = [{"role": "user", "content": prompt}]
|
@@ -214,27 +243,39 @@ def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
|
214 |
|
215 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
216 |
|
217 |
-
def respond(message, history, model, temperature, num_calls, use_web_search):
|
218 |
logging.info(f"User Query: {message}")
|
219 |
logging.info(f"Model Used: {model}")
|
220 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
221 |
|
|
|
|
|
222 |
try:
|
223 |
if use_web_search:
|
224 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
225 |
response = f"{main_content}\n\n{sources}"
|
226 |
first_line = response.split('\n')[0] if response else ''
|
227 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
228 |
yield response
|
229 |
else:
|
230 |
embed = get_embeddings()
|
231 |
if os.path.exists("faiss_database"):
|
232 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
233 |
retriever = database.as_retriever()
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
236 |
else:
|
237 |
context_str = "No documents available."
|
|
|
|
|
238 |
|
239 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
240 |
# Use Cloudflare API
|
@@ -244,7 +285,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
244 |
yield partial_response
|
245 |
else:
|
246 |
# Use Hugging Face API
|
247 |
-
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
248 |
first_line = partial_response.split('\n')[0] if partial_response else ''
|
249 |
logging.info(f"Generated Response (first line): {first_line}")
|
250 |
yield partial_response
|
@@ -253,7 +294,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
253 |
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
254 |
logging.info("Falling back to Mistral model due to Phi-3 error")
|
255 |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
256 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search)
|
257 |
else:
|
258 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
259 |
|
@@ -284,7 +325,8 @@ After writing the document, please provide a list of sources used in your respon
|
|
284 |
payload = {
|
285 |
"messages": inputs,
|
286 |
"stream": True,
|
287 |
-
"temperature": temperature
|
|
|
288 |
}
|
289 |
|
290 |
full_response = ""
|
@@ -335,7 +377,7 @@ After writing the document, please provide a list of sources used in your respon
|
|
335 |
for i in range(num_calls):
|
336 |
for message in client.chat_completion(
|
337 |
messages=[{"role": "user", "content": prompt}],
|
338 |
-
max_tokens=
|
339 |
temperature=temperature,
|
340 |
stream=True,
|
341 |
):
|
@@ -344,23 +386,46 @@ After writing the document, please provide a list of sources used in your respon
|
|
344 |
main_content += chunk
|
345 |
yield main_content, "" # Yield partial main content without sources
|
346 |
|
347 |
-
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
|
|
|
|
348 |
embed = get_embeddings()
|
349 |
if os.path.exists("faiss_database"):
|
|
|
350 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
351 |
else:
|
|
|
352 |
yield "No documents available. Please upload PDF documents to answer questions."
|
353 |
return
|
354 |
|
355 |
retriever = database.as_retriever()
|
|
|
356 |
relevant_docs = retriever.get_relevant_documents(query)
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
|
|
360 |
# Use Cloudflare API with the retrieved context
|
361 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
362 |
yield response
|
363 |
else:
|
|
|
364 |
# Use Hugging Face API
|
365 |
prompt = f"""Using the following context from the PDF documents:
|
366 |
{context_str}
|
@@ -370,9 +435,10 @@ Write a detailed and complete response that answers the following user question:
|
|
370 |
|
371 |
response = ""
|
372 |
for i in range(num_calls):
|
|
|
373 |
for message in client.chat_completion(
|
374 |
messages=[{"role": "user", "content": prompt}],
|
375 |
-
max_tokens=
|
376 |
temperature=temperature,
|
377 |
stream=True,
|
378 |
):
|
@@ -380,6 +446,8 @@ Write a detailed and complete response that answers the following user question:
|
|
380 |
chunk = message.choices[0].delta.content
|
381 |
response += chunk
|
382 |
yield response # Yield partial response
|
|
|
|
|
383 |
|
384 |
def vote(data: gr.LikeData):
|
385 |
if data.liked:
|
@@ -388,22 +456,44 @@ def vote(data: gr.LikeData):
|
|
388 |
print(f"You downvoted this response: {data.value}")
|
389 |
|
390 |
css = """
|
391 |
-
/*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
"""
|
393 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
# Define the checkbox outside the demo block
|
395 |
-
|
|
|
|
|
|
|
|
|
396 |
|
397 |
demo = gr.ChatInterface(
|
398 |
respond,
|
399 |
additional_inputs=[
|
400 |
-
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[
|
401 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
402 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
403 |
-
use_web_search
|
|
|
404 |
],
|
405 |
title="AI-powered Web Search and PDF Chat Assistant",
|
406 |
-
description="Chat with your PDFs or use web search to answer questions.",
|
407 |
theme=gr.themes.Soft(
|
408 |
primary_hue="orange",
|
409 |
secondary_hue="amber",
|
@@ -422,7 +512,6 @@ demo = gr.ChatInterface(
|
|
422 |
color_accent_soft_dark="transparent",
|
423 |
code_background_fill_dark="#140b0b"
|
424 |
),
|
425 |
-
|
426 |
css=css,
|
427 |
examples=[
|
428 |
["Tell me about the contents of the uploaded PDFs."],
|
@@ -431,6 +520,13 @@ demo = gr.ChatInterface(
|
|
431 |
],
|
432 |
cache_examples=False,
|
433 |
analytics_enabled=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
)
|
435 |
|
436 |
# Add file upload functionality
|
@@ -443,18 +539,22 @@ with demo:
|
|
443 |
update_button = gr.Button("Upload Document")
|
444 |
|
445 |
update_output = gr.Textbox(label="Update Status")
|
446 |
-
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
|
447 |
-
|
448 |
|
|
|
|
|
|
|
|
|
|
|
449 |
gr.Markdown(
|
450 |
"""
|
451 |
## How to use
|
452 |
1. Upload PDF documents using the file input at the top.
|
453 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
454 |
-
3.
|
455 |
-
4.
|
456 |
-
5.
|
457 |
-
6.
|
|
|
458 |
"""
|
459 |
)
|
460 |
|
|
|
33 |
MODELS = [
|
34 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
35 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
36 |
+
"@cf/meta/llama-3.1-8b-instruct",
|
37 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
38 |
]
|
39 |
|
40 |
# Initialize LlamaParse
|
|
|
64 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
65 |
|
66 |
def get_embeddings():
|
67 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
68 |
|
69 |
def update_vectors(files, parser):
|
70 |
+
global uploaded_documents
|
71 |
+
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
72 |
+
|
73 |
if not files:
|
74 |
+
logging.warning("No files provided for update_vectors")
|
75 |
+
return "Please upload at least one PDF file.", gr.CheckboxGroup(
|
76 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
77 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
78 |
+
label="Select documents to query"
|
79 |
+
)
|
80 |
|
81 |
embed = get_embeddings()
|
82 |
total_chunks = 0
|
83 |
|
84 |
all_data = []
|
85 |
for file in files:
|
86 |
+
logging.info(f"Processing file: {file.name}")
|
87 |
+
try:
|
88 |
+
data = load_document(file, parser)
|
89 |
+
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
90 |
+
all_data.extend(data)
|
91 |
+
total_chunks += len(data)
|
92 |
+
# Append new documents instead of replacing
|
93 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
94 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
95 |
+
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
96 |
+
else:
|
97 |
+
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
98 |
+
except Exception as e:
|
99 |
+
logging.error(f"Error processing file {file.name}: {str(e)}")
|
100 |
+
|
101 |
+
logging.info(f"Total chunks processed: {total_chunks}")
|
102 |
|
103 |
if os.path.exists("faiss_database"):
|
104 |
+
logging.info("Updating existing FAISS database")
|
105 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
106 |
database.add_documents(all_data)
|
107 |
else:
|
108 |
+
logging.info("Creating new FAISS database")
|
109 |
database = FAISS.from_documents(all_data, embed)
|
110 |
|
111 |
database.save_local("faiss_database")
|
112 |
+
logging.info("FAISS database saved")
|
113 |
|
114 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
115 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
116 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
117 |
+
label="Select documents to query"
|
118 |
+
)
|
119 |
|
120 |
+
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
|
121 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
122 |
full_response = ""
|
123 |
messages = [{"role": "user", "content": prompt}]
|
|
|
243 |
|
244 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
245 |
|
246 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
247 |
logging.info(f"User Query: {message}")
|
248 |
logging.info(f"Model Used: {model}")
|
249 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
250 |
|
251 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
252 |
+
|
253 |
try:
|
254 |
if use_web_search:
|
255 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
256 |
response = f"{main_content}\n\n{sources}"
|
257 |
first_line = response.split('\n')[0] if response else ''
|
258 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
259 |
yield response
|
260 |
else:
|
261 |
embed = get_embeddings()
|
262 |
if os.path.exists("faiss_database"):
|
263 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
264 |
retriever = database.as_retriever()
|
265 |
+
|
266 |
+
# Filter relevant documents based on user selection
|
267 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
268 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
269 |
+
|
270 |
+
if not relevant_docs:
|
271 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
272 |
+
return
|
273 |
+
|
274 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
275 |
else:
|
276 |
context_str = "No documents available."
|
277 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
278 |
+
return
|
279 |
|
280 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
281 |
# Use Cloudflare API
|
|
|
285 |
yield partial_response
|
286 |
else:
|
287 |
# Use Hugging Face API
|
288 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
289 |
first_line = partial_response.split('\n')[0] if partial_response else ''
|
290 |
logging.info(f"Generated Response (first line): {first_line}")
|
291 |
yield partial_response
|
|
|
294 |
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
295 |
logging.info("Falling back to Mistral model due to Phi-3 error")
|
296 |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
297 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
298 |
else:
|
299 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
300 |
|
|
|
325 |
payload = {
|
326 |
"messages": inputs,
|
327 |
"stream": True,
|
328 |
+
"temperature": temperature,
|
329 |
+
"max_tokens": 32000
|
330 |
}
|
331 |
|
332 |
full_response = ""
|
|
|
377 |
for i in range(num_calls):
|
378 |
for message in client.chat_completion(
|
379 |
messages=[{"role": "user", "content": prompt}],
|
380 |
+
max_tokens=10000,
|
381 |
temperature=temperature,
|
382 |
stream=True,
|
383 |
):
|
|
|
386 |
main_content += chunk
|
387 |
yield main_content, "" # Yield partial main content without sources
|
388 |
|
389 |
+
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
390 |
+
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
391 |
+
|
392 |
embed = get_embeddings()
|
393 |
if os.path.exists("faiss_database"):
|
394 |
+
logging.info("Loading FAISS database")
|
395 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
396 |
else:
|
397 |
+
logging.warning("No FAISS database found")
|
398 |
yield "No documents available. Please upload PDF documents to answer questions."
|
399 |
return
|
400 |
|
401 |
retriever = database.as_retriever()
|
402 |
+
logging.info(f"Retrieving relevant documents for query: {query}")
|
403 |
relevant_docs = retriever.get_relevant_documents(query)
|
404 |
+
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
405 |
+
|
406 |
+
# Filter relevant_docs based on selected documents
|
407 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
408 |
+
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
409 |
+
|
410 |
+
if not filtered_docs:
|
411 |
+
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
412 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
413 |
+
return
|
414 |
+
|
415 |
+
for doc in filtered_docs:
|
416 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
417 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
418 |
+
|
419 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
420 |
+
logging.info(f"Total context length: {len(context_str)}")
|
421 |
|
422 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
423 |
+
logging.info("Using Cloudflare API")
|
424 |
# Use Cloudflare API with the retrieved context
|
425 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
426 |
yield response
|
427 |
else:
|
428 |
+
logging.info("Using Hugging Face API")
|
429 |
# Use Hugging Face API
|
430 |
prompt = f"""Using the following context from the PDF documents:
|
431 |
{context_str}
|
|
|
435 |
|
436 |
response = ""
|
437 |
for i in range(num_calls):
|
438 |
+
logging.info(f"API call {i+1}/{num_calls}")
|
439 |
for message in client.chat_completion(
|
440 |
messages=[{"role": "user", "content": prompt}],
|
441 |
+
max_tokens=10000,
|
442 |
temperature=temperature,
|
443 |
stream=True,
|
444 |
):
|
|
|
446 |
chunk = message.choices[0].delta.content
|
447 |
response += chunk
|
448 |
yield response # Yield partial response
|
449 |
+
|
450 |
+
logging.info("Finished generating response")
|
451 |
|
452 |
def vote(data: gr.LikeData):
|
453 |
if data.liked:
|
|
|
456 |
print(f"You downvoted this response: {data.value}")
|
457 |
|
458 |
css = """
|
459 |
+
/* Fine-tune chatbox size */
|
460 |
+
.chatbot-container {
|
461 |
+
height: 600px !important;
|
462 |
+
width: 100% !important;
|
463 |
+
}
|
464 |
+
.chatbot-container > div {
|
465 |
+
height: 100%;
|
466 |
+
width: 100%;
|
467 |
+
}
|
468 |
"""
|
469 |
|
470 |
+
uploaded_documents = []
|
471 |
+
|
472 |
+
def display_documents():
|
473 |
+
return gr.CheckboxGroup(
|
474 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
475 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
476 |
+
label="Select documents to query"
|
477 |
+
)
|
478 |
+
|
479 |
# Define the checkbox outside the demo block
|
480 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
481 |
+
|
482 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
483 |
+
|
484 |
+
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
485 |
|
486 |
demo = gr.ChatInterface(
|
487 |
respond,
|
488 |
additional_inputs=[
|
489 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
490 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
491 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
492 |
+
use_web_search,
|
493 |
+
document_selector
|
494 |
],
|
495 |
title="AI-powered Web Search and PDF Chat Assistant",
|
496 |
+
description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.",
|
497 |
theme=gr.themes.Soft(
|
498 |
primary_hue="orange",
|
499 |
secondary_hue="amber",
|
|
|
512 |
color_accent_soft_dark="transparent",
|
513 |
code_background_fill_dark="#140b0b"
|
514 |
),
|
|
|
515 |
css=css,
|
516 |
examples=[
|
517 |
["Tell me about the contents of the uploaded PDFs."],
|
|
|
520 |
],
|
521 |
cache_examples=False,
|
522 |
analytics_enabled=False,
|
523 |
+
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
524 |
+
chatbot = gr.Chatbot(
|
525 |
+
show_copy_button=True,
|
526 |
+
likeable=True,
|
527 |
+
layout="bubble",
|
528 |
+
height=400,
|
529 |
+
)
|
530 |
)
|
531 |
|
532 |
# Add file upload functionality
|
|
|
539 |
update_button = gr.Button("Upload Document")
|
540 |
|
541 |
update_output = gr.Textbox(label="Update Status")
|
|
|
|
|
542 |
|
543 |
+
# Update both the output text and the document selector
|
544 |
+
update_button.click(update_vectors,
|
545 |
+
inputs=[file_input, parser_dropdown],
|
546 |
+
outputs=[update_output, document_selector])
|
547 |
+
|
548 |
gr.Markdown(
|
549 |
"""
|
550 |
## How to use
|
551 |
1. Upload PDF documents using the file input at the top.
|
552 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
553 |
+
3. Select the documents you want to query using the checkboxes.
|
554 |
+
4. Ask questions in the chat interface.
|
555 |
+
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
556 |
+
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
557 |
+
7. Use the provided examples or ask your own questions.
|
558 |
"""
|
559 |
)
|
560 |
|