Spaces:
Sleeping
Sleeping
import os | |
import json | |
import re | |
import gradio as gr | |
import requests | |
from duckduckgo_search import DDGS | |
from typing import List | |
from pydantic import BaseModel, Field | |
from tempfile import NamedTemporaryFile | |
from langchain_community.vectorstores import FAISS | |
from langchain_core.vectorstores import VectorStore | |
from langchain_core.documents import Document | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from llama_parse import LlamaParse | |
from langchain_core.documents import Document | |
from huggingface_hub import InferenceClient | |
import inspect | |
import logging | |
import shutil | |
# Set up basic configuration for logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Environment variables and configurations | |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY") | |
ACCOUNT_ID = os.environ.get("CLOUDFARE_ACCOUNT_ID") | |
API_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN") | |
API_BASE_URL = "https://api.cloudflare.com/client/v4/accounts/a17f03e0f049ccae0c15cdcf3b9737ce/ai/run/" | |
print(f"ACCOUNT_ID: {ACCOUNT_ID}") | |
print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set") | |
MODELS = [ | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"@cf/meta/llama-3.1-8b-instruct", | |
"mistralai/Mistral-Nemo-Instruct-2407" | |
] | |
# Initialize LlamaParse | |
llama_parser = LlamaParse( | |
api_key=llama_cloud_api_key, | |
result_type="markdown", | |
num_workers=4, | |
verbose=True, | |
language="en", | |
) | |
def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[Document]: | |
"""Loads and splits the document into pages.""" | |
if parser == "pypdf": | |
loader = PyPDFLoader(file.name) | |
return loader.load_and_split() | |
elif parser == "llamaparse": | |
try: | |
documents = llama_parser.load_data(file.name) | |
return [Document(page_content=doc.text, metadata={"source": file.name}) for doc in documents] | |
except Exception as e: | |
print(f"Error using Llama Parse: {str(e)}") | |
print("Falling back to PyPDF parser") | |
loader = PyPDFLoader(file.name) | |
return loader.load_and_split() | |
else: | |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.") | |
def get_embeddings(): | |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large") | |
# Add this at the beginning of your script, after imports | |
DOCUMENTS_FILE = "uploaded_documents.json" | |
def load_documents(): | |
if os.path.exists(DOCUMENTS_FILE): | |
with open(DOCUMENTS_FILE, "r") as f: | |
return json.load(f) | |
return [] | |
def save_documents(documents): | |
with open(DOCUMENTS_FILE, "w") as f: | |
json.dump(documents, f) | |
# Replace the global uploaded_documents with this | |
uploaded_documents = load_documents() | |
# Modify the update_vectors function | |
def update_vectors(files, parser): | |
global uploaded_documents | |
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}") | |
if not files: | |
logging.warning("No files provided for update_vectors") | |
return "Please upload at least one PDF file.", display_documents() | |
embed = get_embeddings() | |
total_chunks = 0 | |
all_data = [] | |
for file in files: | |
logging.info(f"Processing file: {file.name}") | |
try: | |
data = load_document(file, parser) | |
if not data: | |
logging.warning(f"No chunks loaded from {file.name}") | |
continue | |
logging.info(f"Loaded {len(data)} chunks from {file.name}") | |
all_data.extend(data) | |
total_chunks += len(data) | |
if not any(doc["name"] == file.name for doc in uploaded_documents): | |
uploaded_documents.append({"name": file.name, "selected": True}) | |
logging.info(f"Added new document to uploaded_documents: {file.name}") | |
else: | |
logging.info(f"Document already exists in uploaded_documents: {file.name}") | |
except Exception as e: | |
logging.error(f"Error processing file {file.name}: {str(e)}") | |
logging.info(f"Total chunks processed: {total_chunks}") | |
if not all_data: | |
logging.warning("No valid data extracted from uploaded files") | |
return "No valid data could be extracted from the uploaded files. Please check the file contents and try again.", display_documents() | |
try: | |
if os.path.exists("faiss_database"): | |
logging.info("Updating existing FAISS database") | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
database.add_documents(all_data) | |
else: | |
logging.info("Creating new FAISS database") | |
database = FAISS.from_documents(all_data, embed) | |
database.save_local("faiss_database") | |
logging.info("FAISS database saved") | |
except Exception as e: | |
logging.error(f"Error updating FAISS database: {str(e)}") | |
return f"Error updating vector store: {str(e)}", display_documents() | |
# Save the updated list of documents | |
save_documents(uploaded_documents) | |
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", display_documents() | |
def delete_documents(selected_docs): | |
global uploaded_documents | |
if not selected_docs: | |
return "No documents selected for deletion.", display_documents() | |
embed = get_embeddings() | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
deleted_docs = [] | |
docs_to_keep = [] | |
for doc in database.docstore._dict.values(): | |
if doc.metadata.get("source") not in selected_docs: | |
docs_to_keep.append(doc) | |
else: | |
deleted_docs.append(doc.metadata.get("source", "Unknown")) | |
# Print debugging information | |
logging.info(f"Total documents before deletion: {len(database.docstore._dict)}") | |
logging.info(f"Documents to keep: {len(docs_to_keep)}") | |
logging.info(f"Documents to delete: {len(deleted_docs)}") | |
if not docs_to_keep: | |
# If all documents are deleted, remove the FAISS database directory | |
if os.path.exists("faiss_database"): | |
shutil.rmtree("faiss_database") | |
logging.info("All documents deleted. Removed FAISS database directory.") | |
else: | |
# Create new FAISS index with remaining documents | |
new_database = FAISS.from_documents(docs_to_keep, embed) | |
new_database.save_local("faiss_database") | |
logging.info(f"Created new FAISS index with {len(docs_to_keep)} documents.") | |
# Update uploaded_documents list | |
uploaded_documents = [doc for doc in uploaded_documents if doc["name"] not in deleted_docs] | |
save_documents(uploaded_documents) | |
return f"Deleted documents: {', '.join(deleted_docs)}", display_documents() | |
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False): | |
print(f"Starting generate_chunked_response with {num_calls} calls") | |
full_response = "" | |
messages = [{"role": "user", "content": prompt}] | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
# Cloudflare API | |
for i in range(num_calls): | |
print(f"Starting Cloudflare API call {i+1}") | |
if should_stop: | |
print("Stop clicked, breaking loop") | |
break | |
try: | |
response = requests.post( | |
f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/meta/llama-3.1-8b-instruct", | |
headers={"Authorization": f"Bearer {API_TOKEN}"}, | |
json={ | |
"stream": true, | |
"messages": [ | |
{"role": "system", "content": "You are a friendly assistant"}, | |
{"role": "user", "content": prompt} | |
], | |
"max_tokens": max_tokens, | |
"temperature": temperature | |
}, | |
stream=true | |
) | |
for line in response.iter_lines(): | |
if should_stop: | |
print("Stop clicked during streaming, breaking") | |
break | |
if line: | |
try: | |
json_data = json.loads(line.decode('utf-8').split('data: ')[1]) | |
chunk = json_data['response'] | |
full_response += chunk | |
except json.JSONDecodeError: | |
continue | |
print(f"Cloudflare API call {i+1} completed") | |
except Exception as e: | |
print(f"Error in generating response from Cloudflare: {str(e)}") | |
else: | |
# Original Hugging Face API logic | |
client = InferenceClient(model, token=huggingface_token) | |
for i in range(num_calls): | |
print(f"Starting Hugging Face API call {i+1}") | |
if should_stop: | |
print("Stop clicked, breaking loop") | |
break | |
try: | |
for message in client.chat_completion( | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
stream=True, | |
): | |
if should_stop: | |
print("Stop clicked during streaming, breaking") | |
break | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
full_response += chunk | |
print(f"Hugging Face API call {i+1} completed") | |
except Exception as e: | |
print(f"Error in generating response from Hugging Face: {str(e)}") | |
# Clean up the response | |
clean_response = re.sub(r'<s>\[INST\].*?\[/INST\]\s*', '', full_response, flags=re.DOTALL) | |
clean_response = clean_response.replace("Using the following context:", "").strip() | |
clean_response = clean_response.replace("Using the following context from the PDF documents:", "").strip() | |
# Remove duplicate paragraphs and sentences | |
paragraphs = clean_response.split('\n\n') | |
unique_paragraphs = [] | |
for paragraph in paragraphs: | |
if paragraph not in unique_paragraphs: | |
sentences = paragraph.split('. ') | |
unique_sentences = [] | |
for sentence in sentences: | |
if sentence not in unique_sentences: | |
unique_sentences.append(sentence) | |
unique_paragraphs.append('. '.join(unique_sentences)) | |
final_response = '\n\n'.join(unique_paragraphs) | |
print(f"Final clean response: {final_response[:100]}...") | |
return final_response | |
def duckduckgo_search(query): | |
with DDGS() as ddgs: | |
results = ddgs.text(query, max_results=5) | |
return results | |
class CitingSources(BaseModel): | |
sources: List[str] = Field( | |
..., | |
description="List of sources to cite. Should be an URL of the source." | |
) | |
def chatbot_interface(message, history, use_web_search, model, temperature, num_calls): | |
if not message.strip(): | |
return "", history | |
history = history + [(message, "")] | |
try: | |
for response in respond(message, history, model, temperature, num_calls, use_web_search): | |
history[-1] = (message, response) | |
yield history | |
except gr.CancelledError: | |
yield history | |
except Exception as e: | |
logging.error(f"Unexpected error in chatbot_interface: {str(e)}") | |
history[-1] = (message, f"An unexpected error occurred: {str(e)}") | |
yield history | |
def retry_last_response(history, use_web_search, model, temperature, num_calls): | |
if not history: | |
return history | |
last_user_msg = history[-1][0] | |
history = history[:-1] # Remove the last response | |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls) | |
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs, instruction_key): | |
logging.info(f"User Query: {message}") | |
logging.info(f"Model Used: {model}") | |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}") | |
logging.info(f"Selected Documents: {selected_docs}") | |
logging.info(f"Instruction Key: {instruction_key}") | |
try: | |
if instruction_key and instruction_key != "None": | |
# This is a summary generation request | |
instruction = INSTRUCTION_PROMPTS[instruction_key] | |
context_str = get_context_for_summary(selected_docs) | |
message = f"{instruction}\n\nUsing the following context from the PDF documents:\n{context_str}\nGenerate a detailed summary." | |
use_web_search = False # Ensure we use PDF search for summaries | |
if use_web_search: | |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature): | |
response = f"{main_content}\n\n{sources}" | |
first_line = response.split('\n')[0] if response else '' | |
# logging.info(f"Generated Response (first line): {first_line}") | |
yield response | |
else: | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
retriever = database.as_retriever() | |
# Filter relevant documents based on user selection | |
all_relevant_docs = retriever.get_relevant_documents(message) | |
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs] | |
if not relevant_docs: | |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query." | |
return | |
context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
else: | |
context_str = "No documents available." | |
yield "No documents available. Please upload PDF documents to answer questions." | |
return | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
# Use Cloudflare API | |
for partial_response in get_response_from_cloudflare(prompt="", context=context_str, query=message, num_calls=num_calls, temperature=temperature, search_type="pdf"): | |
first_line = partial_response.split('\n')[0] if partial_response else '' | |
# logging.info(f"Generated Response (first line): {first_line}") | |
yield partial_response | |
else: | |
# Use Hugging Face API | |
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature): | |
first_line = partial_response.split('\n')[0] if partial_response else '' | |
# logging.info(f"Generated Response (first line): {first_line}") | |
yield partial_response | |
except Exception as e: | |
logging.error(f"Error with {model}: {str(e)}") | |
if "microsoft/Phi-3-mini-4k-instruct" in model: | |
logging.info("Falling back to Mistral model due to Phi-3 error") | |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3" | |
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs, instruction_key) | |
else: | |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model." | |
logging.basicConfig(level=logging.DEBUG) | |
def get_context_for_summary(selected_docs): | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
retriever = database.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 most relevant chunks | |
# Create a generic query that covers common financial summary topics | |
generic_query = "financial performance revenue profit assets liabilities cash flow key metrics highlights" | |
relevant_docs = retriever.get_relevant_documents(generic_query) | |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs] | |
if not filtered_docs: | |
return "No relevant information found in the selected documents for summary generation." | |
context_str = "\n".join([doc.page_content for doc in filtered_docs]) | |
return context_str | |
else: | |
return "No documents available for summary generation." | |
def get_context_for_query(query, selected_docs): | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
retriever = database.as_retriever(search_kwargs={"k": 3}) # Retrieve top 3 most relevant chunks | |
relevant_docs = retriever.get_relevant_documents(query) | |
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs] | |
if not filtered_docs: | |
return "No relevant information found in the selected documents for the given query." | |
context_str = "\n".join([doc.page_content for doc in filtered_docs]) | |
return context_str | |
else: | |
return "No documents available to answer the query." | |
def get_response_from_cloudflare(prompt, context, query, num_calls=3, temperature=0.2, search_type="pdf"): | |
headers = { | |
"Authorization": f"Bearer {API_TOKEN}", | |
"Content-Type": "application/json" | |
} | |
model = "@cf/meta/llama-3.1-8b-instruct" | |
if search_type == "pdf": | |
instruction = f"""Using the following context from the PDF documents: | |
{context} | |
Write a detailed and complete response that answers the following user question: '{query}'""" | |
else: # web search | |
instruction = f"""Using the following context: | |
{context} | |
Write a detailed and complete research document that fulfills the following user request: '{query}' | |
After writing the document, please provide a list of sources used in your response.""" | |
inputs = [ | |
{"role": "system", "content": instruction}, | |
{"role": "user", "content": query} | |
] | |
payload = { | |
"messages": inputs, | |
"stream": True, | |
"temperature": temperature, | |
"max_tokens": 32000 | |
} | |
full_response = "" | |
for i in range(num_calls): | |
try: | |
with requests.post(f"{API_BASE_URL}{model}", headers=headers, json=payload, stream=True) as response: | |
if response.status_code == 200: | |
for line in response.iter_lines(): | |
if line: | |
try: | |
json_response = json.loads(line.decode('utf-8').split('data: ')[1]) | |
if 'response' in json_response: | |
chunk = json_response['response'] | |
full_response += chunk | |
yield full_response | |
except (json.JSONDecodeError, IndexError) as e: | |
logging.error(f"Error parsing streaming response: {str(e)}") | |
continue | |
else: | |
logging.error(f"HTTP Error: {response.status_code}, Response: {response.text}") | |
yield f"I apologize, but I encountered an HTTP error: {response.status_code}. Please try again later." | |
except Exception as e: | |
logging.error(f"Error in generating response from Cloudflare: {str(e)}") | |
yield f"I apologize, but an error occurred: {str(e)}. Please try again later." | |
if not full_response: | |
yield "I apologize, but I couldn't generate a response at this time. Please try again later." | |
def create_web_search_vectors(search_results): | |
embed = get_embeddings() | |
documents = [] | |
for result in search_results: | |
if 'body' in result: | |
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}" | |
documents.append(Document(page_content=content, metadata={"source": result['href']})) | |
return FAISS.from_documents(documents, embed) | |
def get_response_with_search(query, model, num_calls=3, temperature=0.2): | |
search_results = duckduckgo_search(query) | |
web_search_database = create_web_search_vectors(search_results) | |
if not web_search_database: | |
yield "No web search results available. Please try again.", "" | |
return | |
retriever = web_search_database.as_retriever(search_kwargs={"k": 5}) | |
relevant_docs = retriever.get_relevant_documents(query) | |
context = "\n".join([doc.page_content for doc in relevant_docs]) | |
prompt = f"""Using the following context from web search results: | |
{context} | |
Write a detailed and complete research document that fulfills the following user request: '{query}' | |
After writing the document, please provide a list of sources used in your response.""" | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
# Use Cloudflare API | |
for response in get_response_from_cloudflare(prompt="", context=context, query=query, num_calls=num_calls, temperature=temperature, search_type="web"): | |
yield response, "" # Yield streaming response without sources | |
else: | |
# Use Hugging Face API | |
client = InferenceClient(model, token=huggingface_token) | |
main_content = "" | |
for i in range(num_calls): | |
for message in client.chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=10000, | |
temperature=temperature, | |
stream=True, | |
): | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
main_content += chunk | |
yield main_content, "" # Yield partial main content without sources | |
INSTRUCTION_PROMPTS = { | |
"Asset Managers": "Summarize the key financial metrics, assets under management, and performance highlights for this asset management company.", | |
"Consumer Finance Companies": "Provide a summary of the company's loan portfolio, interest income, credit quality, and key operational metrics.", | |
"Mortgage REITs": "Summarize the REIT's mortgage-backed securities portfolio, net interest income, book value per share, and dividend yield.", | |
# Add more instruction prompts as needed | |
} | |
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2): | |
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}") | |
embed = get_embeddings() | |
if os.path.exists("faiss_database"): | |
logging.info("Loading FAISS database") | |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
else: | |
logging.warning("No FAISS database found") | |
yield "No documents available. Please upload PDF documents to answer questions." | |
return | |
# Pre-filter the documents | |
filtered_docs = [] | |
for doc_id, doc in database.docstore._dict.items(): | |
if isinstance(doc, Document) and doc.metadata.get("source") in selected_docs: | |
filtered_docs.append(doc) | |
logging.info(f"Number of documents after pre-filtering: {len(filtered_docs)}") | |
if not filtered_docs: | |
logging.warning(f"No documents found for the selected sources: {selected_docs}") | |
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query." | |
return | |
# Create a new FAISS index with only the selected documents | |
filtered_db = FAISS.from_documents(filtered_docs, embed) | |
retriever = filtered_db.as_retriever(search_kwargs={"k": 10}) | |
logging.info(f"Retrieving relevant documents for query: {query}") | |
relevant_docs = retriever.get_relevant_documents(query) | |
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}") | |
for doc in relevant_docs: | |
logging.info(f"Document source: {doc.metadata['source']}") | |
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document | |
context_str = "\n".join([doc.page_content for doc in relevant_docs]) | |
logging.info(f"Total context length: {len(context_str)}") | |
if model == "@cf/meta/llama-3.1-8b-instruct": | |
logging.info("Using Cloudflare API") | |
# Use Cloudflare API with the retrieved context | |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"): | |
yield response | |
else: | |
logging.info("Using Hugging Face API") | |
# Use Hugging Face API | |
prompt = f"""Using the following context from the PDF documents: | |
{context_str} | |
Write a detailed and complete response that answers the following user question: '{query}'""" | |
client = InferenceClient(model, token=huggingface_token) | |
response = "" | |
for i in range(num_calls): | |
logging.info(f"API call {i+1}/{num_calls}") | |
for message in client.chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=10000, | |
temperature=temperature, | |
stream=True, | |
): | |
if message.choices and message.choices[0].delta and message.choices[0].delta.content: | |
chunk = message.choices[0].delta.content | |
response += chunk | |
yield response # Yield partial response | |
logging.info("Finished generating response") | |
def vote(data: gr.LikeData): | |
if data.liked: | |
print(f"You upvoted this response: {data.value}") | |
else: | |
print(f"You downvoted this response: {data.value}") | |
css = """ | |
/* Fine-tune chatbox size */ | |
} | |
""" | |
uploaded_documents = [] | |
def display_documents(): | |
return gr.CheckboxGroup( | |
choices=[doc["name"] for doc in uploaded_documents], | |
value=[doc["name"] for doc in uploaded_documents if doc["selected"]], | |
label="Select documents to query or delete" | |
) | |
def initial_conversation(): | |
return [ | |
(None, "Welcome! I'm your AI assistant for web search and PDF analysis. Here's how you can use me:\n\n" | |
"1. Set the toggle for Web Search and PDF Search from the checkbox in Additional Inputs drop down window\n" | |
"2. Use web search to find information\n" | |
"3. Upload the documents and ask questions about uploaded PDF documents by selecting your respective document\n" | |
"4. For any queries feel free to reach out @[email protected] or discord - shreyas094\n\n" | |
"To get started, upload some PDFs or ask me a question!") | |
] | |
# Add this new function | |
def refresh_documents(): | |
global uploaded_documents | |
uploaded_documents = load_documents() | |
return display_documents() | |
# Define the checkbox outside the demo block | |
document_selector = gr.CheckboxGroup(label="Select documents to query") | |
use_web_search = gr.Checkbox(label="Use Web Search", value=True) | |
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)" | |
instruction_choices = ["None"] + list(INSTRUCTION_PROMPTS.keys()) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"), | |
use_web_search, | |
document_selector, | |
gr.Dropdown(choices=instruction_choices, label="Select Entity Type for Summary", value="None") | |
], | |
title="AI-powered Web Search and PDF Chat Assistant", | |
description="Chat with your PDFs, use web search to answer questions, or generate summaries. Select an Entity Type for Summary to generate a specific summary.", | |
theme=gr.themes.Soft( | |
primary_hue="orange", | |
secondary_hue="amber", | |
neutral_hue="gray", | |
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"] | |
).set( | |
body_background_fill_dark="#0c0505", | |
block_background_fill_dark="#0c0505", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1b0f0f", | |
input_background_fill_dark="#140b0b", | |
button_secondary_background_fill_dark="#140b0b", | |
border_color_accent_dark="#1b0f0f", | |
border_color_primary_dark="#1b0f0f", | |
background_fill_secondary_dark="#0c0505", | |
color_accent_soft_dark="transparent", | |
code_background_fill_dark="#140b0b" | |
), | |
css=css, | |
examples=[ | |
["Tell me about the contents of the uploaded PDFs."], | |
["What are the main topics discussed in the documents?"], | |
["Can you summarize the key points from the PDFs?"] | |
], | |
cache_examples=False, | |
analytics_enabled=False, | |
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7), | |
chatbot = gr.Chatbot( | |
show_copy_button=True, | |
likeable=True, | |
layout="bubble", | |
height=400, | |
value=initial_conversation() | |
) | |
) | |
# Add file upload functionality | |
with demo: | |
gr.Markdown("## Upload and Manage PDF Documents") | |
with gr.Row(): | |
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"]) | |
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="llamaparse") | |
update_button = gr.Button("Upload Document") | |
refresh_button = gr.Button("Refresh Document List") | |
update_output = gr.Textbox(label="Update Status") | |
delete_button = gr.Button("Delete Selected Documents") | |
# Update both the output text and the document selector | |
update_button.click(update_vectors, | |
inputs=[file_input, parser_dropdown], | |
outputs=[update_output, document_selector]) | |
# Add the refresh button functionality | |
refresh_button.click(refresh_documents, | |
inputs=[], | |
outputs=[document_selector]) | |
# Add the delete button functionality | |
delete_button.click(delete_documents, | |
inputs=[document_selector], | |
outputs=[update_output, document_selector]) | |
gr.Markdown( | |
""" | |
## How to use | |
1. Upload PDF documents using the file input at the top. | |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store. | |
3. Select the documents you want to query using the checkboxes. | |
4. Ask questions in the chat interface. | |
5. Toggle "Use Web Search" to switch between PDF chat and web search. | |
6. Adjust Temperature and Number of API Calls to fine-tune the response generation. | |
7. Use the provided examples or ask your own questions. | |
""" | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |