import streamlit as st from getpass import getpass from langchain_google_genai import GoogleGenerativeAI from langchain.prompts import PromptTemplate from typing import List, Tuple from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_to_openai_function_messages from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser from langchain.utilities.tavily_search import TavilySearchAPIWrapper from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import AIMessage, HumanMessage from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.pydantic_v1 import BaseModel, Field from langchain_google_genai import ChatGoogleGenerativeAI from langchain.agents import initialize_agent, AgentType # Create the tool search = TavilySearchAPIWrapper(tavily_api_key='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') description = """"A search engine optimized for comprehensive, accurate, \ and trusted results. Useful for when you need to answer questions \ about current events or about recent information. \ Input should be a search query. \ If the user is asking about something that you don't know about, \ you should probably use this tool to see if that can provide any information.""" tavily_tool = TavilySearchResults(api_wrapper=search, description=description) tools = [tavily_tool] from getpass import getpass # api_key = getpass() llm = GoogleGenerativeAI(model="gemini-pro", google_api_key="AIzaSyBNfTHLMjR9vGiomZsW9NFsUTwc2U2NuFA") prompt = ChatPromptTemplate.from_messages( [ MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) llm_with_tools = llm.bind(functions=tools) # Set up Streamlit st.title('Fact-Checking Chatbot') # Get user input user_input = st.text_input("Enter your question") # If user has entered a question, generate response if user_input: response = llm.invoke(user_input) st.write(response) agent_chain = initialize_agent( [tavily_tool], llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) prompt = """ You are a fact-checker. You are asked to verify the following statement based on the information you get from your tool and your knowledge. You should provide a response that is based on the information you have and that is as accurate as possible. Your response should be True or False. If you are not sure, you should say that you are not sure. """ prompt = st.text_area(prompt) answer = agent_chain.invoke( prompt + "\n " + user_input, ) st.write(answer)