import streamlit as st import tensorflow as tf import numpy as np def model_prediction(test_image): model = tf.keras.models.load_model("trained_plant_disease_model.keras") image = tf.keras.preprocessing.image.load_img(test_image,target_size=(128,128)) input_arr = tf.keras.preprocessing.image.img_to_array(image) input_arr = np.array([input_arr]) #convert single image to batch predictions = model.predict(input_arr) return np.argmax(predictions) #return index of max element #Sidebar st.sidebar.title("Plant Disease Detection System for Sustainable Agriculture") app_mode = st.sidebar.selectbox("Select Page",["HOME","DISEASE RECOGNITION"]) #app_mode = st.sidebar.selectbox("Select Page",["Home"," ","Disease Recognition"]) # import Image from pillow to open images from PIL import Image img = Image.open("Diseases.png") # display image using streamlit # width is used to set the width of an image st.image(img) #Main Page if(app_mode=="HOME"): st.markdown("

Plant Disease Detection System for Sustainable Agriculture", unsafe_allow_html=True) #Prediction Page elif(app_mode=="DISEASE RECOGNITION"): st.header("Plant Disease Detection System for Sustainable Agriculture") test_image = st.file_uploader("Choose an Image:") if(st.button("Show Image")): st.image(test_image,width=4,use_column_width=True) #Predict button if(st.button("Predict")): st.snow() st.write("Our Prediction") result_index = model_prediction(test_image) #Reading Labels class_name = ['Apple___Apple_scab', 'Apple___Black_rot', 'Apple___Cedar_apple_rust', 'Apple___healthy', 'Blueberry___healthy', 'Cherry_(including_sour)___Powdery_mildew', 'Cherry_(including_sour)___healthy', 'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot', 'Corn_(maize)___Common_rust_', 'Corn_(maize)___Northern_Leaf_Blight', 'Corn_(maize)___healthy', 'Grape___Black_rot', 'Grape___Esca_(Black_Measles)', 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)', 'Grape___healthy', 'Orange___Haunglongbing_(Citrus_greening)', 'Peach___Bacterial_spot', 'Peach___healthy', 'Pepper,_bell___Bacterial_spot', 'Pepper,_bell___healthy', 'Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy', 'Raspberry___healthy', 'Soybean___healthy', 'Squash___Powdery_mildew', 'Strawberry___Leaf_scorch', 'Strawberry___healthy', 'Tomato___Bacterial_spot', 'Tomato___Early_blight', 'Tomato___Late_blight', 'Tomato___Leaf_Mold', 'Tomato___Septoria_leaf_spot', 'Tomato___Spider_mites Two-spotted_spider_mite', 'Tomato___Target_Spot', 'Tomato___Tomato_Yellow_Leaf_Curl_Virus', 'Tomato___Tomato_mosaic_virus', 'Tomato___healthy'] st.success("Model is Predicting it's a {}".format(class_name[result_index]))