Spaces:
Sleeping
Sleeping
File size: 1,402 Bytes
785f4dd aec05f5 a264185 785f4dd aec05f5 a264185 785f4dd aec05f5 785f4dd aec05f5 785f4dd aec05f5 785f4dd a264185 aec05f5 785f4dd aec05f5 785f4dd a264185 aec05f5 785f4dd aec05f5 785f4dd aec05f5 a264185 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import pipeline
from gtts import gTTS
import tempfile
import pygame
import time
# Load the question-answering model
model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"
model = pipeline("question-answering", model=model_name)
def question_answering(context, question):
# Use the question-answering model to get the answer
result = model(context=context, question=question)
answer = result["answer"]
# Convert the answer to audio
tts = gTTS(text=answer, lang='en')
audio_path = tempfile.NamedTemporaryFile(suffix=".mp3").name
tts.save(audio_path)
return answer, audio_path
def play_audio(audio_path):
pygame.mixer.init()
pygame.mixer.music.load(audio_path)
pygame.mixer.music.play()
while pygame.mixer.music.get_busy():
time.sleep(0.1)
# Create the Gradio interface
iface = gr.Interface(
fn=question_answering,
inputs=["text", "text"],
outputs=[
gr.outputs.Textbox(label="Answer"),
gr.outputs.Audio(label="Answer Audio", type="numpy")
],
title="Question Answering - AVISHKAARAK",
description="Enter a context and a question to get an answer. :)",
examples=[
["The capital of France is Paris.", "What is the capital of France?"],
["OpenAI is famous for developing GPT-3.", "What is OpenAI known for?"],
],
)
# Run the interface
iface.launch() |