Spaces:
Build error
Build error
File size: 9,575 Bytes
97069e1 d415739 97069e1 d415739 97069e1 f94c3f9 97069e1 72619e8 97069e1 99aa527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import nltk; nltk.download('wordnet')
#@title Load Model
selected_model = 'lookbook'
# Load model
import torch
import PIL
import numpy as np
from PIL import Image
import imageio
from models import get_instrumented_model
from decomposition import get_or_compute
from config import Config
from skimage import img_as_ubyte
import gradio as gr
import numpy as np
from ipywidgets import fixed
# Speed up computation
torch.autograd.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True
# Specify model to use
config = Config(
model='StyleGAN2',
layer='style',
output_class=selected_model,
components=80,
use_w=True,
batch_size=5_000, # style layer quite small
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
inst = get_instrumented_model(config.model, config.output_class,
config.layer, torch.device(device), use_w=config.use_w)
path_to_components = get_or_compute(config, inst)
model = inst.model
comps = np.load(path_to_components)
lst = comps.files
latent_dirs = []
latent_stdevs = []
load_activations = False
for item in lst:
if load_activations:
if item == 'act_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'act_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
else:
if item == 'lat_comp':
for i in range(comps[item].shape[0]):
latent_dirs.append(comps[item][i])
if item == 'lat_stdev':
for i in range(comps[item].shape[0]):
latent_stdevs.append(comps[item][i])
#@title Define functions
# Taken from https://github.com/alexanderkuk/log-progress
def log_progress(sequence, every=1, size=None, name='Items'):
from ipywidgets import IntProgress, HTML, VBox
from IPython.display import display
is_iterator = False
if size is None:
try:
size = len(sequence)
except TypeError:
is_iterator = True
if size is not None:
if every is None:
if size <= 200:
every = 1
else:
every = int(size / 200) # every 0.5%
else:
assert every is not None, 'sequence is iterator, set every'
if is_iterator:
progress = IntProgress(min=0, max=1, value=1)
progress.bar_style = 'info'
else:
progress = IntProgress(min=0, max=size, value=0)
label = HTML()
box = VBox(children=[label, progress])
display(box)
index = 0
try:
for index, record in enumerate(sequence, 1):
if index == 1 or index % every == 0:
if is_iterator:
label.value = '{name}: {index} / ?'.format(
name=name,
index=index
)
else:
progress.value = index
label.value = u'{name}: {index} / {size}'.format(
name=name,
index=index,
size=size
)
yield record
except:
progress.bar_style = 'danger'
raise
else:
progress.bar_style = 'success'
progress.value = index
label.value = "{name}: {index}".format(
name=name,
index=str(index or '?')
)
def name_direction(sender):
if not text.value:
print('Please name the direction before saving')
return
if num in named_directions.values():
target_key = list(named_directions.keys())[list(named_directions.values()).index(num)]
print(f'Direction already named: {target_key}')
print(f'Overwriting... ')
del(named_directions[target_key])
named_directions[text.value] = [num, start_layer.value, end_layer.value]
save_direction(random_dir, text.value)
for item in named_directions:
print(item, named_directions[item])
def save_direction(direction, filename):
filename += ".npy"
np.save(filename, direction, allow_pickle=True, fix_imports=True)
print(f'Latent direction saved as {filename}')
def mix_w(w1, w2, content, style):
for i in range(0,5):
w2[i] = w1[i] * (1 - content) + w2[i] * content
for i in range(5, 16):
w2[i] = w1[i] * (1 - style) + w2[i] * style
return w2
def display_sample_pytorch(seed, truncation, directions, distances, scale, start, end, w=None, disp=True, save=None, noise_spec=None):
# blockPrint()
model.truncation = truncation
if w is None:
w = model.sample_latent(1, seed=seed).detach().cpu().numpy()
w = [w]*model.get_max_latents() # one per layer
else:
w = [np.expand_dims(x, 0) for x in w]
for l in range(start, end):
for i in range(len(directions)):
w[l] = w[l] + directions[i] * distances[i] * scale
torch.cuda.empty_cache()
#save image and display
out = model.sample_np(w)
final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS)
if save is not None:
if disp == False:
print(save)
final_im.save(f'out/{seed}_{save:05}.png')
if disp:
display(final_im)
return final_im
def generate_mov(seed, truncation, direction_vec, scale, layers, n_frames, out_name = 'out', noise_spec = None, loop=True):
"""Generates a mov moving back and forth along the chosen direction vector"""
# Example of reading a generated set of images, and storing as MP4.
movieName = f'{out_name}.mp4'
offset = -10
step = 20 / n_frames
imgs = []
for i in log_progress(range(n_frames), name = "Generating frames"):
print(f'\r{i} / {n_frames}', end='')
w = model.sample_latent(1, seed=seed).cpu().numpy()
model.truncation = truncation
w = [w]*model.get_max_latents() # one per layer
for l in layers:
if l <= model.get_max_latents():
w[l] = w[l] + direction_vec * offset * scale
#save image and display
out = model.sample_np(w)
final_im = Image.fromarray((out * 255).astype(np.uint8))
imgs.append(out)
#increase offset
offset += step
if loop:
imgs += imgs[::-1]
with imageio.get_writer(movieName, mode='I') as writer:
for image in log_progress(list(imgs), name = "Creating animation"):
writer.append_data(img_as_ubyte(image))
#@title Demo UI
def generate_image(seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer):
seed1 = int(seed1)
seed2 = int(seed2)
scale = 1
params = {'c0': c0,
'c1': c1,
'c2': c2,
'c3': c3,
'c4': c4,
'c5': c5,
'c6': c6}
param_indexes = {'c0': 0,
'c1': 1,
'c2': 2,
'c3': 3,
'c4': 4,
'c5': 5,
'c6': 6}
directions = []
distances = []
for k, v in params.items():
directions.append(latent_dirs[param_indexes[k]])
distances.append(v)
w1 = model.sample_latent(1, seed=seed1).detach().cpu().numpy()
w1 = [w1]*model.get_max_latents() # one per layer
im1 = model.sample_np(w1)
w2 = model.sample_latent(1, seed=seed2).detach().cpu().numpy()
w2 = [w2]*model.get_max_latents() # one per layer
im2 = model.sample_np(w2)
combined_im = np.concatenate([im1, im2], axis=1)
input_im = Image.fromarray((combined_im * 255).astype(np.uint8))
mixed_w = mix_w(w1, w2, content, style)
return input_im, display_sample_pytorch(seed1, truncation, directions, distances, scale, int(start_layer), int(end_layer), w=mixed_w, disp=False)
truncation = gr.inputs.Slider(minimum=0, maximum=1, default=0.5, label="Truncation")
start_layer = gr.inputs.Number(default=3, label="Start Layer")
end_layer = gr.inputs.Number(default=14, label="End Layer")
seed1 = gr.inputs.Number(default=0, label="Seed 1")
seed2 = gr.inputs.Number(default=0, label="Seed 2")
content = gr.inputs.Slider(label="Structure", minimum=0, maximum=1, default=0.5)
style = gr.inputs.Slider(label="Style", minimum=0, maximum=1, default=0.5)
slider_max_val = 20
slider_min_val = -20
slider_step = 1
c0 = gr.inputs.Slider(label="Sleeve & Size", minimum=slider_min_val, maximum=slider_max_val, default=0)
c1 = gr.inputs.Slider(label="Dress - Jacket", minimum=slider_min_val, maximum=slider_max_val, default=0)
c2 = gr.inputs.Slider(label="Female Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c3 = gr.inputs.Slider(label="Coat", minimum=slider_min_val, maximum=slider_max_val, default=0)
c4 = gr.inputs.Slider(label="Graphics", minimum=slider_min_val, maximum=slider_max_val, default=0)
c5 = gr.inputs.Slider(label="Dark", minimum=slider_min_val, maximum=slider_max_val, default=0)
c6 = gr.inputs.Slider(label="Less Cleavage", minimum=slider_min_val, maximum=slider_max_val, default=0)
scale = 1
inputs = [seed1, seed2, content, style, truncation, c0, c1, c2, c3, c4, c5, c6, start_layer, end_layer]
description = "Change the seed number to generate different parent design. Made by <a href='https://www.mfrashad.com/' target='_blank'>@mfrashad</a>. For more details on how to build this, read the <a href='https://towardsdatascience.com/how-to-build-an-ai-fashion-designer-575b5e67915e' target='_blank'>article</a> or <a href='https://github.com/mfrashad/ClothingGAN' target='_blank'>repo</a>. Please give a clap/star if you find it useful :)"
gr.Interface(generate_image, inputs, ["image", "image"], description=description, live=True, title="ClothingGAN").launch() |