ShadowDominator commited on
Commit
8745d6a
·
1 Parent(s): 6c0be41

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +40 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+
5
+ tokenizer_sentence_analysis = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis")
6
+ model_sentence_analysis = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis")
7
+ paragraph = """
8
+ I woke up this morning feeling refreshed and excited for the day ahead.
9
+ I had a great night's sleep, and I was looking forward to spending time with my family and friends.
10
+ I went for a walk in the park, and I enjoyed the beautiful weather. I also stopped by my favorite coffee shop and got a delicious cup of coffee.
11
+ I felt so happy and content, and I knew that it was going to be a great day.
12
+
13
+ """
14
+ def sentence_sentiment_model(text, tokenizer, model):
15
+ inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
16
+ with torch.no_grad():
17
+ result = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
18
+ logits = result.logits.detach()
19
+ probs = torch.softmax(logits, dim=1)
20
+ pos_prob = probs[0][2].item()
21
+ neu_prob = probs[0][1].item()
22
+ neg_prob = probs[0][0].item()
23
+ return {'Positive': [round(float(pos_prob), 2)],"Neutural":[round(float(neu_prob), 2)], 'Negative': [round(float(neg_prob), 2)]}
24
+
25
+ def sentence_sentiment(text):
26
+ result = sentence_sentiment_model(text,tokenizer_sentence_analysis,model_sentence_analysis)
27
+ return result
28
+
29
+ with gr.Blocks(title="Sentence",css="footer {visibility: hidden}") as demo:
30
+ with gr.Row():
31
+ with gr.Column():
32
+ gr.Markdown("## Sentence sentiment")
33
+ with gr.Row():
34
+ with gr.Column():
35
+ inputs = gr.TextArea(label="sentence",value=paragraph,interactive=True)
36
+ btn = gr.Button(value="RUN")
37
+ with gr.Column():
38
+ output = gr.Label(label="output")
39
+ btn.click(fn=sentence_sentiment,inputs=[inputs],outputs=[output])
40
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio==3.32.0
2
+ torch==2.0.0
3
+ transformers==4.28.1