import tensorflow as tf tf.config.set_visible_devices([], 'GPU') # gpu_devices = tf.config.experimental.list_physical_devices('GPU') # if gpu_devices: # tf.config.experimental.set_memory_growth(gpu_devices[0], True) # else: # print(f"TensorFlow device: {gpu_devices}") from keras.applications import resnet import tensorflow.keras.layers as L import os from tensorflow.keras.layers import Dense, GlobalAveragePooling2D import matplotlib.pyplot as plt from typing import Tuple from huggingface_hub import snapshot_download from labels import lookup_170 import numpy as np if not os.path.exists('model_classification'): REPO_ID='Serrelab/fossil_classification_models' token = os.environ.get('READ_TOKEN') if token is None: print("warning! A read token in env variables is needed for authentication.") snapshot_download(repo_id=REPO_ID, token=token,repo_type='model',local_dir='model_classification') def get_model(base_arch='Nasnet',weights='imagenet',input_shape=(600,600,3),classes=64500): if base_arch == 'Nasnet': base_model = tf.keras.applications.NASNetLarge( input_shape=input_shape, include_top=False, weights=weights, input_tensor=None, pooling=None, ) elif base_arch == 'Resnet50v2': base_model = tf.keras.applications.ResNet50V2(weights=weights, include_top=False, pooling='avg', input_shape=input_shape) elif base_arch == 'Resnet50v2_finer': base_model = tf.keras.applications.ResNet50V2(weights=weights, include_top=False, pooling='avg', input_shape=input_shape) base_model = resnet.stack2(base_model.output, 512, 2, name="conv6") base_model = resnet.stack2(base_model, 512, 2, name="conv7") base_model = tf.keras.Model(base_model.input,base_model) model = tf.keras.Sequential([ base_model, L.Dense(classes,activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', ) return model def get_triplet_model(input_shape = (600, 600, 3), embedding_units = 256, embedding_depth = 2, backbone_class=tf.keras.applications.ResNet50V2, nb_classes = 19,load_weights=False,finer_model=False,backbone_name ='Resnet50v2'): backbone = backbone_class(input_shape=input_shape, include_top=False) if load_weights: model = get_model(backbone_name,input_shape=input_shape) #TODO model.load_weights('/users/irodri15/data/irodri15/Fossils/Models/pretrained-herbarium/Resnet50v2_NO_imagenet_None_best_1600.h5') trw = model.layers[0].get_weights() backbone.set_weights(trw) if finer_model: base_model = resnet.stack2(backbone.output, 512, 2, name="conv6") base_model = resnet.stack2(base_model, 512, 2, name="conv7") backbone = tf.keras.Model(backbone.input,base_model) features = GlobalAveragePooling2D()(backbone.output) embedding_head = features for embed_i in range(embedding_depth): embedding_head = Dense(embedding_units, activation="relu" if embed_i < embedding_depth-1 else "linear")(embedding_head) embedding_head = tf.nn.l2_normalize(embedding_head, -1, epsilon=1e-5) logits_head = Dense(nb_classes)(features) model = tf.keras.Model(backbone.input, [embedding_head, logits_head]) model.compile(loss='cce',metrics=['accuracy']) #model.summary() return model load_size = 600 crop_size = 600 def _clever_crop(img: tf.Tensor, target_size: Tuple[int]=(128,128), grayscale: bool=False ) -> tf.Tensor: """[summary] Args: img (tf.Tensor): [description] target_size (Tuple[int], optional): [description]. Defaults to (128,128). grayscale (bool, optional): [description]. Defaults to False. Returns: tf.Tensor: [description] """ maxside = tf.math.maximum(tf.shape(img)[0],tf.shape(img)[1]) minside = tf.math.minimum(tf.shape(img)[0],tf.shape(img)[1]) new_img = img if tf.math.divide(maxside,minside) > 1.2: repeating = tf.math.floor(tf.math.divide(maxside,minside)) new_img = img if tf.math.equal(tf.shape(img)[1],minside): for _ in range(int(repeating)): new_img = tf.concat((new_img, img), axis=1) if tf.math.equal(tf.shape(img)[0],minside): for _ in range(int(repeating)): new_img = tf.concat((new_img, img), axis=0) new_img = tf.image.rot90(new_img) else: new_img = img repeating = 0 img = tf.image.resize(new_img, target_size) if grayscale: img = tf.image.rgb_to_grayscale(img) img = tf.image.grayscale_to_rgb(img) return img,repeating def preprocess(img,size=600): img = np.array(img, np.float32) / 255.0 img = tf.image.resize(img, (size, size)) return np.array(img, np.float32) def select_top_n(preds,n=10): top_n = np.argsort(preds)[-n:][::-1] return top_n def parse_results(top_n,logits): results = {} for n in top_n: label = lookup_170[n] results[label] = float(logits[n]) return results def inference_resnet_embedding(x,model,size=576,n_classes=170,n_top=10): cropped = _clever_crop(x,(size,size))[0] prep = preprocess(cropped,size=size) embedding = model.predict(np.array([prep]))[0][0] return embedding def inference_resnet_finer(x,model,size=576,n_classes=170,n_top=10): cropped = _clever_crop(x,(size,size))[0] prep = preprocess(cropped,size=size) logits = tf.nn.softmax(model.predict(np.array([prep]))[1][0]).cpu().numpy() top_n = select_top_n(logits,n=n_top) return parse_results(top_n,logits)