import argparse import cv2 import numpy as np import torch from models.with_mobilenet import PoseEstimationWithMobileNet from modules.keypoints import extract_keypoints, group_keypoints from modules.load_state import load_state from modules.pose import Pose, track_poses from val import normalize, pad_width class ImageReader(object): def __init__(self, file_names): self.file_names = file_names self.max_idx = len(file_names) def __iter__(self): self.idx = 0 return self def __next__(self): if self.idx == self.max_idx: raise StopIteration img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR) if img.size == 0: raise IOError('Image {} cannot be read'.format(self.file_names[self.idx])) self.idx = self.idx + 1 return img class VideoReader(object): def __init__(self, file_name): self.file_name = file_name try: # OpenCV needs int to read from webcam self.file_name = int(file_name) except ValueError: pass def __iter__(self): self.cap = cv2.VideoCapture(self.file_name) if not self.cap.isOpened(): raise IOError('Video {} cannot be opened'.format(self.file_name)) return self def __next__(self): was_read, img = self.cap.read() if not was_read: raise StopIteration return img def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu, pad_value=(0, 0, 0), img_mean=np.array([128, 128, 128], np.float32), img_scale=np.float32(1/256)): height, width, _ = img.shape scale = net_input_height_size / height scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR) scaled_img = normalize(scaled_img, img_mean, img_scale) min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)] padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims) tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float() if not cpu: tensor_img = tensor_img.cuda() stages_output = net(tensor_img) stage2_heatmaps = stages_output[-2] heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0)) heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC) stage2_pafs = stages_output[-1] pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0)) pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC) return heatmaps, pafs, scale, pad def run_demo(net, image_provider, height_size, cpu, track, smooth): net = net.eval() if not cpu: net = net.cuda() stride = 8 upsample_ratio = 4 num_keypoints = Pose.num_kpts previous_poses = [] delay = 1 for img in image_provider: orig_img = img.copy() heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu) total_keypoints_num = 0 all_keypoints_by_type = [] for kpt_idx in range(num_keypoints): # 19th for bg total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num) pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs) for kpt_id in range(all_keypoints.shape[0]): all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale current_poses = [] for n in range(len(pose_entries)): if len(pose_entries[n]) == 0: continue pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1 for kpt_id in range(num_keypoints): if pose_entries[n][kpt_id] != -1.0: # keypoint was found pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0]) pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1]) pose = Pose(pose_keypoints, pose_entries[n][18]) current_poses.append(pose) if track: track_poses(previous_poses, current_poses, smooth=smooth) previous_poses = current_poses for pose in current_poses: pose.draw(img) img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0) for pose in current_poses: cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]), (pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0)) if track: cv2.putText(img, 'id: {}'.format(pose.id), (pose.bbox[0], pose.bbox[1] - 16), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255)) cv2.imshow('Lightweight Human Pose Estimation Python Demo', img) key = cv2.waitKey(delay) if key == 27: # esc return elif key == 112: # 'p' if delay == 1: delay = 0 else: delay = 1 if __name__ == '__main__': parser = argparse.ArgumentParser( description='''Lightweight human pose estimation python demo. This is just for quick results preview. Please, consider c++ demo for the best performance.''') parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint') parser.add_argument('--height-size', type=int, default=256, help='network input layer height size') parser.add_argument('--video', type=str, default='', help='path to video file or camera id') parser.add_argument('--images', nargs='+', default='', help='path to input image(s)') parser.add_argument('--cpu', action='store_true', help='run network inference on cpu') parser.add_argument('--track', type=int, default=1, help='track pose id in video') parser.add_argument('--smooth', type=int, default=1, help='smooth pose keypoints') args = parser.parse_args() if args.video == '' and args.images == '': raise ValueError('Either --video or --image has to be provided') net = PoseEstimationWithMobileNet() checkpoint = torch.load(args.checkpoint_path, map_location='cpu') load_state(net, checkpoint) frame_provider = ImageReader(args.images) if args.video != '': frame_provider = VideoReader(args.video) else: args.track = 0 run_demo(net, frame_provider, args.height_size, args.cpu, args.track, args.smooth)