Seif-Yasser's picture
Upload 118 files
9f6fec6 verified
import cv2
import numpy as np
from modules.keypoints import BODY_PARTS_KPT_IDS, BODY_PARTS_PAF_IDS
from modules.one_euro_filter import OneEuroFilter
class Pose:
num_kpts = 18
kpt_names = ['nose', 'neck',
'r_sho', 'r_elb', 'r_wri', 'l_sho', 'l_elb', 'l_wri',
'r_hip', 'r_knee', 'r_ank', 'l_hip', 'l_knee', 'l_ank',
'r_eye', 'l_eye',
'r_ear', 'l_ear']
sigmas = np.array([.26, .79, .79, .72, .62, .79, .72, .62, 1.07, .87, .89, 1.07, .87, .89, .25, .25, .35, .35],
dtype=np.float32) / 10.0
vars = (sigmas * 2) ** 2
last_id = -1
color = [0, 224, 255]
def __init__(self, keypoints, confidence):
super().__init__()
self.keypoints = keypoints
self.confidence = confidence
self.bbox = Pose.get_bbox(self.keypoints)
self.id = None
self.filters = [[OneEuroFilter(), OneEuroFilter()] for _ in range(Pose.num_kpts)]
@staticmethod
def get_bbox(keypoints):
found_keypoints = np.zeros((np.count_nonzero(keypoints[:, 0] != -1), 2), dtype=np.int32)
found_kpt_id = 0
for kpt_id in range(Pose.num_kpts):
if keypoints[kpt_id, 0] == -1:
continue
found_keypoints[found_kpt_id] = keypoints[kpt_id]
found_kpt_id += 1
bbox = cv2.boundingRect(found_keypoints)
return bbox
def update_id(self, id=None):
self.id = id
if self.id is None:
self.id = Pose.last_id + 1
Pose.last_id += 1
def draw(self, img):
assert self.keypoints.shape == (Pose.num_kpts, 2)
for part_id in range(len(BODY_PARTS_PAF_IDS) - 2):
kpt_a_id = BODY_PARTS_KPT_IDS[part_id][0]
global_kpt_a_id = self.keypoints[kpt_a_id, 0]
if global_kpt_a_id != -1:
x_a, y_a = self.keypoints[kpt_a_id]
cv2.circle(img, (int(x_a), int(y_a)), 3, Pose.color, -1)
kpt_b_id = BODY_PARTS_KPT_IDS[part_id][1]
global_kpt_b_id = self.keypoints[kpt_b_id, 0]
if global_kpt_b_id != -1:
x_b, y_b = self.keypoints[kpt_b_id]
cv2.circle(img, (int(x_b), int(y_b)), 3, Pose.color, -1)
if global_kpt_a_id != -1 and global_kpt_b_id != -1:
cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), Pose.color, 2)
def get_similarity(a, b, threshold=0.5):
num_similar_kpt = 0
for kpt_id in range(Pose.num_kpts):
if a.keypoints[kpt_id, 0] != -1 and b.keypoints[kpt_id, 0] != -1:
distance = np.sum((a.keypoints[kpt_id] - b.keypoints[kpt_id]) ** 2)
area = max(a.bbox[2] * a.bbox[3], b.bbox[2] * b.bbox[3])
similarity = np.exp(-distance / (2 * (area + np.spacing(1)) * Pose.vars[kpt_id]))
if similarity > threshold:
num_similar_kpt += 1
return num_similar_kpt
def track_poses(previous_poses, current_poses, threshold=3, smooth=False):
"""Propagate poses ids from previous frame results. Id is propagated,
if there are at least `threshold` similar keypoints between pose from previous frame and current.
If correspondence between pose on previous and current frame was established, pose keypoints are smoothed.
:param previous_poses: poses from previous frame with ids
:param current_poses: poses from current frame to assign ids
:param threshold: minimal number of similar keypoints between poses
:param smooth: smooth pose keypoints between frames
:return: None
"""
current_poses = sorted(current_poses, key=lambda pose: pose.confidence, reverse=True) # match confident poses first
mask = np.ones(len(previous_poses), dtype=np.int32)
for current_pose in current_poses:
best_matched_id = None
best_matched_pose_id = None
best_matched_iou = 0
for id, previous_pose in enumerate(previous_poses):
if not mask[id]:
continue
iou = get_similarity(current_pose, previous_pose)
if iou > best_matched_iou:
best_matched_iou = iou
best_matched_pose_id = previous_pose.id
best_matched_id = id
if best_matched_iou >= threshold:
mask[best_matched_id] = 0
else: # pose not similar to any previous
best_matched_pose_id = None
current_pose.update_id(best_matched_pose_id)
if smooth:
for kpt_id in range(Pose.num_kpts):
if current_pose.keypoints[kpt_id, 0] == -1:
continue
# reuse filter if previous pose has valid filter
if (best_matched_pose_id is not None
and previous_poses[best_matched_id].keypoints[kpt_id, 0] != -1):
current_pose.filters[kpt_id] = previous_poses[best_matched_id].filters[kpt_id]
current_pose.keypoints[kpt_id, 0] = current_pose.filters[kpt_id][0](current_pose.keypoints[kpt_id, 0])
current_pose.keypoints[kpt_id, 1] = current_pose.filters[kpt_id][1](current_pose.keypoints[kpt_id, 1])
current_pose.bbox = Pose.get_bbox(current_pose.keypoints)