File size: 6,898 Bytes
9f6fec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse

import cv2
import numpy as np
import torch

from models.with_mobilenet import PoseEstimationWithMobileNet
from modules.keypoints import extract_keypoints, group_keypoints
from modules.load_state import load_state
from modules.pose import Pose, track_poses
from val import normalize, pad_width


class ImageReader(object):
    def __init__(self, file_names):
        self.file_names = file_names
        self.max_idx = len(file_names)

    def __iter__(self):
        self.idx = 0
        return self

    def __next__(self):
        if self.idx == self.max_idx:
            raise StopIteration
        img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR)
        if img.size == 0:
            raise IOError('Image {} cannot be read'.format(self.file_names[self.idx]))
        self.idx = self.idx + 1
        return img


class VideoReader(object):
    def __init__(self, file_name):
        self.file_name = file_name
        try:  # OpenCV needs int to read from webcam
            self.file_name = int(file_name)
        except ValueError:
            pass

    def __iter__(self):
        self.cap = cv2.VideoCapture(self.file_name)
        if not self.cap.isOpened():
            raise IOError('Video {} cannot be opened'.format(self.file_name))
        return self

    def __next__(self):
        was_read, img = self.cap.read()
        if not was_read:
            raise StopIteration
        return img


def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu,

               pad_value=(0, 0, 0), img_mean=np.array([128, 128, 128], np.float32), img_scale=np.float32(1/256)):
    height, width, _ = img.shape
    scale = net_input_height_size / height

    scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
    scaled_img = normalize(scaled_img, img_mean, img_scale)
    min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)]
    padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims)

    tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float()
    if not cpu:
        tensor_img = tensor_img.cuda()

    stages_output = net(tensor_img)

    stage2_heatmaps = stages_output[-2]
    heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0))
    heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)

    stage2_pafs = stages_output[-1]
    pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0))
    pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)

    return heatmaps, pafs, scale, pad


def run_demo(net, image_provider, height_size, cpu, track, smooth):
    net = net.eval()
    if not cpu:
        net = net.cuda()

    stride = 8
    upsample_ratio = 4
    num_keypoints = Pose.num_kpts
    previous_poses = []
    delay = 1
    for img in image_provider:
        orig_img = img.copy()
        heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu)

        total_keypoints_num = 0
        all_keypoints_by_type = []
        for kpt_idx in range(num_keypoints):  # 19th for bg
            total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num)

        pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs)
        for kpt_id in range(all_keypoints.shape[0]):
            all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
            all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
        current_poses = []
        for n in range(len(pose_entries)):
            if len(pose_entries[n]) == 0:
                continue
            pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
            for kpt_id in range(num_keypoints):
                if pose_entries[n][kpt_id] != -1.0:  # keypoint was found
                    pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
                    pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
            pose = Pose(pose_keypoints, pose_entries[n][18])
            current_poses.append(pose)

        if track:
            track_poses(previous_poses, current_poses, smooth=smooth)
            previous_poses = current_poses
        for pose in current_poses:
            pose.draw(img)
        img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0)
        for pose in current_poses:
            cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
                          (pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
            if track:
                cv2.putText(img, 'id: {}'.format(pose.id), (pose.bbox[0], pose.bbox[1] - 16),
                            cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255))
        cv2.imshow('Lightweight Human Pose Estimation Python Demo', img)
        key = cv2.waitKey(delay)
        if key == 27:  # esc
            return
        elif key == 112:  # 'p'
            if delay == 1:
                delay = 0
            else:
                delay = 1


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='''Lightweight human pose estimation python demo.

                       This is just for quick results preview.

                       Please, consider c++ demo for the best performance.''')
    parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint')
    parser.add_argument('--height-size', type=int, default=256, help='network input layer height size')
    parser.add_argument('--video', type=str, default='', help='path to video file or camera id')
    parser.add_argument('--images', nargs='+', default='', help='path to input image(s)')
    parser.add_argument('--cpu', action='store_true', help='run network inference on cpu')
    parser.add_argument('--track', type=int, default=1, help='track pose id in video')
    parser.add_argument('--smooth', type=int, default=1, help='smooth pose keypoints')
    args = parser.parse_args()

    if args.video == '' and args.images == '':
        raise ValueError('Either --video or --image has to be provided')

    net = PoseEstimationWithMobileNet()
    checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
    load_state(net, checkpoint)

    frame_provider = ImageReader(args.images)
    if args.video != '':
        frame_provider = VideoReader(args.video)
    else:
        args.track = 0

    run_demo(net, frame_provider, args.height_size, args.cpu, args.track, args.smooth)