Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -164,34 +164,34 @@ def main():
|
|
164 |
# st.write('causality extraction finished')
|
165 |
# st.write("--- %s seconds ---" % (time.time() - start_time))
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
|
171 |
-
|
172 |
-
|
173 |
|
174 |
-
tokenizer = Tokenizer(num_words=100000)
|
175 |
-
tokenizer.fit_on_texts(class_list)
|
176 |
-
word_index = tokenizer.word_index
|
177 |
# text_embedding = np.zeros((len(word_index) + 1, 300))
|
178 |
# for word, i in word_index.items():
|
179 |
# text_embedding[i] = nlp(word).vector
|
180 |
-
json_file = open('model.json', 'r')
|
181 |
-
loaded_model_json = json_file.read()
|
182 |
-
json_file.close()
|
183 |
-
loaded_model = model_from_json(loaded_model_json)
|
184 |
-
# load weights into new model
|
185 |
-
loaded_model.load_weights("model.h5")
|
186 |
|
187 |
-
loss = tf.keras.losses.CategoricalCrossentropy() #from_logits=True
|
188 |
-
loaded_model.compile(loss=loss,optimizer=tf.keras.optimizers.Adam(1e-4))
|
189 |
|
190 |
-
predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
|
191 |
-
predicted = np.argmax(predictions,axis=1)
|
192 |
|
193 |
-
st.write(predictions)
|
194 |
-
st.write(predicted)
|
195 |
# st.write('stakeholder taxonomy finished')
|
196 |
# st.write("--- %s seconds ---" % (time.time() - start_time))
|
197 |
pred1 = predicted
|
|
|
164 |
# st.write('causality extraction finished')
|
165 |
# st.write("--- %s seconds ---" % (time.time() - start_time))
|
166 |
|
167 |
+
filename = 'Checkpoint-classification.sav'
|
168 |
+
loaded_model = pickle.load(open(filename, 'rb'))
|
169 |
+
loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
|
170 |
|
171 |
+
pipeline_test_output = loaded_vectorizer.transform(class_list)
|
172 |
+
predicted = loaded_model.predict(pipeline_test_output)
|
173 |
|
174 |
+
# tokenizer = Tokenizer(num_words=100000)
|
175 |
+
# tokenizer.fit_on_texts(class_list)
|
176 |
+
# word_index = tokenizer.word_index
|
177 |
# text_embedding = np.zeros((len(word_index) + 1, 300))
|
178 |
# for word, i in word_index.items():
|
179 |
# text_embedding[i] = nlp(word).vector
|
180 |
+
# json_file = open('model.json', 'r')
|
181 |
+
# loaded_model_json = json_file.read()
|
182 |
+
# json_file.close()
|
183 |
+
# loaded_model = model_from_json(loaded_model_json)
|
184 |
+
# # load weights into new model
|
185 |
+
# loaded_model.load_weights("model.h5")
|
186 |
|
187 |
+
# loss = tf.keras.losses.CategoricalCrossentropy() #from_logits=True
|
188 |
+
# loaded_model.compile(loss=loss,optimizer=tf.keras.optimizers.Adam(1e-4))
|
189 |
|
190 |
+
# predictions = loaded_model.predict(pad_sequences(tokenizer.texts_to_sequences(class_list),maxlen=MAX_SEQUENCE_LENGTH))
|
191 |
+
# predicted = np.argmax(predictions,axis=1)
|
192 |
|
193 |
+
# st.write(predictions)
|
194 |
+
# st.write(predicted)
|
195 |
# st.write('stakeholder taxonomy finished')
|
196 |
# st.write("--- %s seconds ---" % (time.time() - start_time))
|
197 |
pred1 = predicted
|