Seetha commited on
Commit
2ad5bae
·
1 Parent(s): d1369c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -6
app.py CHANGED
@@ -68,6 +68,11 @@ from datasets import load_dataset
68
  from huggingface_hub import HfApi, list_models
69
  import os
70
  from huggingface_hub import HfFileSystem
 
 
 
 
 
71
 
72
  # dataset = load_dataset('Seetha/Visualization', streaming=True)
73
  # df = pd.DataFrame.from_dict(dataset['train'])
@@ -153,12 +158,19 @@ def main():
153
  class_list.append(i['word'])
154
  entity_list.append(i['entity_group'])
155
 
156
- filename = 'Checkpoint-classification.sav'
157
- loaded_model = pickle.load(open(filename, 'rb'))
158
- loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
159
-
160
- pipeline_test_output = loaded_vectorizer.transform(class_list)
161
- predicted = loaded_model.predict(pipeline_test_output)
 
 
 
 
 
 
 
162
  pred1 = predicted
163
  level0 = []
164
  count =0
 
68
  from huggingface_hub import HfApi, list_models
69
  import os
70
  from huggingface_hub import HfFileSystem
71
+ from tensorflow.keras.models import Sequential, model_from_json
72
+ import tensorflow_datasets as tfds
73
+ import tensorflow as tf
74
+
75
+ tfds.disable_progress_bar()
76
 
77
  # dataset = load_dataset('Seetha/Visualization', streaming=True)
78
  # df = pd.DataFrame.from_dict(dataset['train'])
 
158
  class_list.append(i['word'])
159
  entity_list.append(i['entity_group'])
160
 
161
+ # filename = 'Checkpoint-classification.sav'
162
+ # loaded_model = pickle.load(open(filename, 'rb'))
163
+ # loaded_vectorizer = pickle.load(open('vectorizefile_classification.pickle', 'rb'))
164
+
165
+ # pipeline_test_output = loaded_vectorizer.transform(class_list)
166
+ # predicted = loaded_model.predict(pipeline_test_output)
167
+ json_file = open('model.json', 'r')
168
+ loaded_model_json = json_file.read()
169
+ json_file.close()
170
+ loaded_model = model_from_json(loaded_model_json)
171
+ # load weights into new model
172
+ loaded_model.load_weights("model.h5")
173
+
174
  pred1 = predicted
175
  level0 = []
176
  count =0