# Copyright: DAMO Academy, Alibaba Group # By Xuan Phi Nguyen at DAMO Academy, Alibaba Group # Description: """ VLLM-based demo script to launch Language chat model for Southeast Asian Languages """ import os import numpy as np import argparse import torch import gradio as gr from typing import Any, Iterator from typing import Iterator, List, Optional, Tuple import filelock import glob import json import time from gradio.routes import Request from gradio.utils import SyncToAsyncIterator, async_iteration from gradio.helpers import special_args import anyio from typing import AsyncGenerator, Callable, Literal, Union, cast from gradio_client.documentation import document, set_documentation_group from typing import List, Optional, Union, Dict, Tuple from tqdm.auto import tqdm from huggingface_hub import snapshot_download # @@ environments ================ DEBUG = bool(int(os.environ.get("DEBUG", "1"))) # List of languages to block BLOCK_LANGS = str(os.environ.get("BLOCK_LANGS", "")) BLOCK_LANGS = [x.strip() for x in BLOCK_LANGS.strip().split(";")] if len(BLOCK_LANGS.strip()) > 0 else [] # for lang block, wether to block in history too LANG_BLOCK_HISTORY = bool(int(os.environ.get("LANG_BLOCK_HISTORY", "0"))) TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1")) DTYPE = os.environ.get("DTYPE", "bfloat16") # ! (no debug) whether to download HF_MODEL_NAME and save to MODEL_PATH DOWNLOAD_SNAPSHOT = bool(int(os.environ.get("DOWNLOAD_SNAPSHOT", "0"))) LOG_RESPONSE = bool(int(os.environ.get("LOG_RESPONSE", "0"))) # ! show model path in the demo page, only for internal DISPLAY_MODEL_PATH = bool(int(os.environ.get("DISPLAY_MODEL_PATH", "1"))) # ! uploaded model path, will be downloaded to MODEL_PATH HF_MODEL_NAME = os.environ.get("HF_MODEL_NAME", "DAMO-NLP-SG/seal-13b-chat-a") # ! if model is private, need HF_TOKEN to access the model HF_TOKEN = os.environ.get("HF_TOKEN", None) # ! path where the model is downloaded, either on ./ or persistent disc MODEL_PATH = os.environ.get("MODEL_PATH", "./seal-13b-chat-a") # ! log path LOG_PATH = os.environ.get("LOG_PATH", "").strip() LOG_FILE = None SAVE_LOGS = LOG_PATH is not None and LOG_PATH != '' if SAVE_LOGS: if os.path.exists(LOG_PATH): print(f'LOG_PATH exist: {LOG_PATH}') else: LOG_DIR = os.path.dirname(LOG_PATH) os.makedirs(LOG_DIR, exist_ok=True) # ! get LOG_PATH as aggregated outputs in log GET_LOG_CMD = os.environ.get("GET_LOG_CMD", "").strip() print(f'SAVE_LOGS: {SAVE_LOGS} | {LOG_PATH}') # print(f'GET_LOG_CMD: {GET_LOG_CMD}') # ! !! Whether to delete the folder, ONLY SET THIS IF YOU WANT TO DELETE SAVED MODEL ON PERSISTENT DISC DELETE_FOLDER = os.environ.get("DELETE_FOLDER", "") IS_DELETE_FOLDER = DELETE_FOLDER is not None and os.path.exists(DELETE_FOLDER) print(f'DELETE_FOLDER: {DELETE_FOLDER} | {DOWNLOAD_SNAPSHOT=}') # ! list of keywords to disabled as security measures to comply with local regulation KEYWORDS = os.environ.get("KEYWORDS", "").strip() KEYWORDS = KEYWORDS.split(";") if len(KEYWORDS) > 0 else [] KEYWORDS = [x.lower() for x in KEYWORDS] # bypass BYPASS_USERS = os.environ.get("BYPASS_USERS", "").strip() BYPASS_USERS = BYPASS_USERS.split(";") if len(BYPASS_USERS) > 0 else [] # gradio config PORT = int(os.environ.get("PORT", "7860")) # how many iterations to yield response STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1")) # how many iterations to perform safety check on response STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0")) # whether to enable to popup accept user ENABLE_AGREE_POPUP = bool(int(os.environ.get("ENABLE_AGREE_POPUP", "0"))) # self explanatory MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048")) TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.1")) FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.1")) PRESENCE_PENALTY = float(os.environ.get("PRESENCE_PENALTY", "0.0")) gpu_memory_utilization = float(os.environ.get("gpu_memory_utilization", "0.9")) # whether to enable quantization, currently not in use QUANTIZATION = str(os.environ.get("QUANTIZATION", "")) # Batch inference file upload ENABLE_BATCH_INFER = bool(int(os.environ.get("ENABLE_BATCH_INFER", "1"))) BATCH_INFER_MAX_ITEMS = int(os.environ.get("BATCH_INFER_MAX_ITEMS", "100")) BATCH_INFER_MAX_FILE_SIZE = int(os.environ.get("BATCH_INFER_MAX_FILE_SIZE", "500")) BATCH_INFER_MAX_PROMPT_TOKENS = int(os.environ.get("BATCH_INFER_MAX_PROMPT_TOKENS", "4000")) BATCH_INFER_SAVE_TMP_FILE = os.environ.get("BATCH_INFER_SAVE_TMP_FILE", "./tmp/pred.json") # DATA_SET_REPO_PATH = str(os.environ.get("DATA_SET_REPO_PATH", "")) DATA_SET_REPO = None """ Internal instructions of how to configure the DEMO 1. Upload SFT model as a model to huggingface: hugginface/models/seal_13b_a 2. If the model weights is private, set HF_TOKEN= in https://huggingface.co/spaces/????/?????/settings 3. space config env: `HF_MODEL_NAME=SeaLLMs/seal-13b-chat-a` or the underlining model 4. If enable persistent storage: set HF_HOME=/data/.huggingface MODEL_PATH=/data/.huggingface/seal-13b-chat-a if not: MODEL_PATH=./seal-13b-chat-a HF_HOME=/data/.huggingface MODEL_PATH=/data/ckpt/seal-13b-chat-a DELETE_FOLDER=/data/ """ # ============================== print(f'DEBUG mode: {DEBUG}') print(f'Torch version: {torch.__version__}') try: print(f'Torch CUDA version: {torch.version.cuda}') except Exception as e: print(f'Failed to print cuda version: {e}') try: compute_capability = torch.cuda.get_device_capability() print(f'Torch CUDA compute_capability: {compute_capability}') except Exception as e: print(f'Failed to print compute_capability version: {e}') # @@ constants ================ DTYPES = { 'float16': torch.float16, 'bfloat16': torch.bfloat16 } llm = None demo = None BOS_TOKEN = '' EOS_TOKEN = '' SYSTEM_PROMPT_1 = """You are a helpful, respectful, honest and safe AI assistant built by Alibaba Group.""" # ######### RAG PREPARE RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE = None, None, None # RAG_EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2" RAG_EMBED_MODEL_NAME = "sentence-transformers/LaBSE" def load_embeddings(): global RAG_EMBED if RAG_EMBED is None: from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings print(f'LOading embeddings: {RAG_EMBED_MODEL_NAME}') RAG_EMBED = HuggingFaceEmbeddings(model_name=RAG_EMBED_MODEL_NAME, model_kwargs={'trust_remote_code':True, "device": "cpu"}) else: print(f'RAG_EMBED ALREADY EXIST: {RAG_EMBED_MODEL_NAME}: {RAG_EMBED=}') return RAG_EMBED def get_rag_embeddings(): return load_embeddings() _ = get_rag_embeddings() RAG_CURRENT_VECTORSTORE = None def load_document_split_vectorstore(file_path): global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings from langchain_community.vectorstores import Chroma, FAISS from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader # assert RAG_EMBED is not None splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=50) if file_path.endswith('.pdf'): loader = PyPDFLoader(file_path) elif file_path.endswith('.docx'): loader = Docx2txtLoader(file_path) elif file_path.endswith('.txt'): loader = TextLoader(file_path) splits = loader.load_and_split(splitter) RAG_CURRENT_VECTORSTORE = FAISS.from_texts(texts=[s.page_content for s in splits], embedding=get_rag_embeddings()) return RAG_CURRENT_VECTORSTORE def docs_to_rag_context(docs: List[str]): contexts = "\n".join([d.page_content for d in docs]) context = f"""Answer the following query exclusively based on the information provided in the document above. \ If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query! ### {contexts} ### """ return context def maybe_get_doc_context(message, file_input, rag_num_docs: Optional[int] = 3): global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE doc_context = None if file_input is not None: assert os.path.exists(file_input), f"not found: {file_input}" if file_input == RAG_CURRENT_FILE: # reuse vectorstore = RAG_CURRENT_VECTORSTORE print(f'Reuse vectorstore: {file_input}') else: vectorstore = load_document_split_vectorstore(file_input) print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}') RAG_CURRENT_FILE = file_input docs = vectorstore.similarity_search(message, k=rag_num_docs) doc_context = docs_to_rag_context(docs) return doc_context # ######### RAG PREPARE # ============ CONSTANT ============ # https://github.com/gradio-app/gradio/issues/884 MODEL_NAME = "SeaLLM-7B" MODEL_NAME = str(os.environ.get("MODEL_NAME", "SeaLLM-7B")) MODEL_TITLE = """

SeaLLMs - Large Language Models for Southeast Asia

""" MODEL_TITLE = """
SeaLLMs - Large Language Models for Southeast Asia
""" """ Somehow cannot add image here
""" MODEL_DESC = f"""
{MODEL_NAME}-v2 - a helpful assistant for Southeast Asian Languages 🇬🇧 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇵🇭 🇲🇲. Explore our article for more.
NOTE: The chatbot may produce false and harmful content and does not have up-to-date knowledge. By using our service, you are required to agree to our Terms Of Use, which includes not to use our service to generate any harmful, inappropriate or illegal content. The service collects user dialogue data for testing and improvement under (CC-BY) or similar license. So do not enter any personal information! """.strip() cite_markdown = """ ## Citation If you find our project useful, hope you can star our repo and cite our paper as follows: ``` @article{damonlpsg2023seallm, author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing}, title = {SeaLLMs - Large Language Models for Southeast Asia}, year = 2023, } ``` """ path_markdown = """ #### Model path: {model_path} """ # ! ================================================================== set_documentation_group("component") RES_PRINTED = False @document() class ChatBot(gr.Chatbot): def _postprocess_chat_messages( self, chat_message ): x = super()._postprocess_chat_messages(chat_message) # if isinstance(x, str): # x = x.strip().replace("\n", "
") return x from gradio.components import Button from gradio.events import Dependency, EventListenerMethod # replace events so that submit button is disabled during generation, if stop_btn not found # this prevent weird behavior def _setup_stop_events( self, event_triggers: list[EventListenerMethod], event_to_cancel: Dependency ) -> None: from gradio.components import State event_triggers = event_triggers if isinstance(event_triggers, (list, tuple)) else [event_triggers] if self.stop_btn and self.is_generator: if self.submit_btn: for event_trigger in event_triggers: event_trigger( lambda: ( Button(visible=False), Button(visible=True), ), None, [self.submit_btn, self.stop_btn], api_name=False, queue=False, ) event_to_cancel.then( lambda: (Button(visible=True), Button(visible=False)), None, [self.submit_btn, self.stop_btn], api_name=False, queue=False, ) else: for event_trigger in event_triggers: event_trigger( lambda: Button(visible=True), None, [self.stop_btn], api_name=False, queue=False, ) event_to_cancel.then( lambda: Button(visible=False), None, [self.stop_btn], api_name=False, queue=False, ) self.stop_btn.click( None, None, None, cancels=event_to_cancel, api_name=False, ) else: if self.submit_btn: for event_trigger in event_triggers: event_trigger( lambda: Button(interactive=False), None, [self.submit_btn], api_name=False, queue=False, ) event_to_cancel.then( lambda: Button(interactive=True), None, [self.submit_btn], api_name=False, queue=False, ) # upon clear, cancel the submit event as well if self.clear_btn: self.clear_btn.click( lambda: ([], [], None, Button(interactive=True)), None, [self.chatbot, self.chatbot_state, self.saved_input, self.submit_btn], queue=False, api_name=False, cancels=event_to_cancel, ) # TODO: reconfigure clear button as stop and clear button def _setup_events(self) -> None: from gradio.components import State has_on = False try: from gradio.events import Dependency, EventListenerMethod, on has_on = True except ImportError as ie: has_on = False submit_fn = self._stream_fn if self.is_generator else self._submit_fn def update_time(c_time, chatbot_state): # if chatbot_state is empty, register a new conversaion with the current timestamp # assert len(chatbot_state) > 0, f'empty chatbot state' if len(chatbot_state) <= 1: return gr.Number(value=time.time(), label='current_time', visible=False), chatbot_state # elif len(chatbot_state) == 1: # # assert chatbot_state[-1][-1] is None, f'invalid [[message, None]] , got {chatbot_state}' # return gr.Number(value=time.time(), label='current_time', visible=False), chatbot_state else: return c_time, chatbot_state if has_on: # new version submit_triggers = ( [self.textbox.submit, self.submit_btn.click] if self.submit_btn else [self.textbox.submit] ) submit_event = ( on( submit_triggers, self._clear_and_save_textbox, [self.textbox], [self.textbox, self.saved_input], api_name=False, queue=False, ) .then( self._display_input, [self.saved_input, self.chatbot_state], [self.chatbot, self.chatbot_state], api_name=False, queue=False, ) .then( update_time, [self.additional_inputs[-1], self.chatbot_state], [self.additional_inputs[-1], self.chatbot_state], api_name=False, queue=False, ) .then( submit_fn, [self.saved_input, self.chatbot_state] + self.additional_inputs, [self.chatbot, self.chatbot_state], api_name=False, ) ) self._setup_stop_events(submit_triggers, submit_event) else: raise ValueError(f'Better install new gradio version than 3.44.0') if self.retry_btn: retry_event = ( self.retry_btn.click( self._delete_prev_fn, [self.chatbot_state], [self.chatbot, self.saved_input, self.chatbot_state], api_name=False, queue=False, ) .then( self._display_input, [self.saved_input, self.chatbot_state], [self.chatbot, self.chatbot_state], api_name=False, queue=False, ) .then( submit_fn, [self.saved_input, self.chatbot_state] + self.additional_inputs, [self.chatbot, self.chatbot_state], api_name=False, ) ) self._setup_stop_events([self.retry_btn.click], retry_event) if self.undo_btn: self.undo_btn.click( self._delete_prev_fn, [self.chatbot_state], [self.chatbot, self.saved_input, self.chatbot_state], api_name=False, queue=False, ).then( lambda x: x, [self.saved_input], [self.textbox], api_name=False, queue=False, ) # Reconfigure clear_btn to stop and clear text box def _display_input( self, message: str, history: List[List[Union[str, None]]] ) -> Tuple[List[List[Union[str, None]]], List[List[list[Union[str, None]]]]]: if message is not None and message.strip() != "": history.append([message, None]) return history, history async def _stream_fn( self, message: str, history_with_input, request: Request, *args, ) -> AsyncGenerator: history = history_with_input[:-1] inputs, _, _ = special_args( self.fn, inputs=[message, history, *args], request=request ) if self.is_async: generator = self.fn(*inputs) else: generator = await anyio.to_thread.run_sync( self.fn, *inputs, limiter=self.limiter ) generator = SyncToAsyncIterator(generator, self.limiter) try: first_response = await async_iteration(generator) update = history + [[message, first_response]] yield update, update except StopIteration: update = history + [[message, None]] yield update, update except Exception as e: yield history, history raise e try: async for response in generator: update = history + [[message, response]] yield update, update except Exception as e: # if "invalid" in str(e): # yield history, history # raise e # else: # raise e yield history, history raise e # replace gr.ChatInterface._setup_stop_events = _setup_stop_events gr.ChatInterface._setup_events = _setup_events gr.ChatInterface._display_input = _display_input gr.ChatInterface._stream_fn = _stream_fn @document() class CustomTabbedInterface(gr.Blocks): def __init__( self, interface_list: list[gr.Interface], tab_names: Optional[list[str]] = None, title: Optional[str] = None, description: Optional[str] = None, theme: Optional[gr.Theme] = None, analytics_enabled: Optional[bool] = None, css: Optional[str] = None, ): """ Parameters: interface_list: a list of interfaces to be rendered in tabs. tab_names: a list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc. title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window. analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True. css: custom css or path to custom css file to apply to entire Blocks Returns: a Gradio Tabbed Interface for the given interfaces """ super().__init__( title=title or "Gradio", theme=theme, analytics_enabled=analytics_enabled, mode="tabbed_interface", css=css, ) self.description = description if tab_names is None: tab_names = [f"Tab {i}" for i in range(len(interface_list))] with self: if title: gr.Markdown( f"

{title}

" ) if description: gr.Markdown(description) with gr.Tabs(): for interface, tab_name in zip(interface_list, tab_names): with gr.Tab(label=tab_name): interface.render() def vllm_abort(self): sh = self.llm_engine.scheduler for g in (sh.waiting + sh.running + sh.swapped): sh.abort_seq_group(g.request_id) from vllm.sequence import SequenceStatus scheduler = self.llm_engine.scheduler for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]: for seq_group in state_queue: # if seq_group.request_id == request_id: # Remove the sequence group from the state queue. state_queue.remove(seq_group) for seq in seq_group.seqs: if seq.is_finished(): continue scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED) def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]: from vllm.outputs import RequestOutput # Initialize tqdm. if use_tqdm: num_requests = self.llm_engine.get_num_unfinished_requests() pbar = tqdm(total=num_requests, desc="Processed prompts") # Run the engine. outputs: Dict[str, RequestOutput] = {} while self.llm_engine.has_unfinished_requests(): step_outputs = self.llm_engine.step() for output in step_outputs: outputs[output.request_id] = output if len(outputs) > 0: yield outputs def vllm_generate_stream( self: Any, prompts: Optional[Union[str, List[str]]] = None, sampling_params: Optional[Any] = None, prompt_token_ids: Optional[List[List[int]]] = None, use_tqdm: bool = False, ) -> Dict[str, Any]: """Generates the completions for the input prompts. NOTE: This class automatically batches the given prompts, considering the memory constraint. For the best performance, put all of your prompts into a single list and pass it to this method. Args: prompts: A list of prompts to generate completions for. sampling_params: The sampling parameters for text generation. If None, we use the default sampling parameters. prompt_token_ids: A list of token IDs for the prompts. If None, we use the tokenizer to convert the prompts to token IDs. use_tqdm: Whether to use tqdm to display the progress bar. Returns: A list of `RequestOutput` objects containing the generated completions in the same order as the input prompts. """ from vllm import LLM, SamplingParams if prompts is None and prompt_token_ids is None: raise ValueError("Either prompts or prompt_token_ids must be " "provided.") if isinstance(prompts, str): # Convert a single prompt to a list. prompts = [prompts] if prompts is not None and prompt_token_ids is not None: if len(prompts) != len(prompt_token_ids): raise ValueError("The lengths of prompts and prompt_token_ids " "must be the same.") if sampling_params is None: # Use default sampling params. sampling_params = SamplingParams() # Add requests to the engine. if prompts is not None: num_requests = len(prompts) else: num_requests = len(prompt_token_ids) for i in range(num_requests): prompt = prompts[i] if prompts is not None else None if prompt_token_ids is None: token_ids = None else: token_ids = prompt_token_ids[i] self._add_request(prompt, sampling_params, token_ids) # return self._run_engine(use_tqdm) yield from _vllm_run_engine(self, use_tqdm) # ! avoid saying # LANG_BLOCK_MESSAGE = """Sorry, the language you have asked is currently not supported. If you have questions in other supported languages, I'll be glad to help. \ # Please also consider clearing the chat box for a better experience.""" # KEYWORD_BLOCK_MESSAGE = "Sorry, I cannot fulfill your request. If you have any unrelated question, I'll be glad to help." LANG_BLOCK_MESSAGE = """Unsupported language.""" KEYWORD_BLOCK_MESSAGE = "Invalid request." def _detect_lang(text): # Disable language that may have safety risk from langdetect import detect as detect_lang dlang = None try: dlang = detect_lang(text) except Exception as e: if "No features in text." in str(e): return "en" else: return "zh" return dlang def block_lang( message: str, history: List[Tuple[str, str]] = None, ) -> str: # relieve history base block if len(BLOCK_LANGS) == 0: return False if LANG_BLOCK_HISTORY and history is not None and any((LANG_BLOCK_MESSAGE in x[1].strip()) for x in history): return True else: _lang = _detect_lang(message) if _lang in BLOCK_LANGS: print(f'Detect blocked {_lang}: {message}') return True else: return False def safety_check(text, history=None, ) -> Optional[str]: """ Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content. This provides an additional security measure to enhance safety and compliance with local regulations. """ if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS): return KEYWORD_BLOCK_MESSAGE if len(BLOCK_LANGS) > 0: if block_lang(text, history): return LANG_BLOCK_MESSAGE return None TURN_TEMPLATE = "<|im_start|>{role}\n{content}" TURN_PREFIX = "<|im_start|>{role}\n" def chatml_chat_convo_format(conversations, add_assistant_prefix: bool, default_system=SYSTEM_PROMPT_1): if conversations[0]['role'] != 'system': conversations = [{"role": "system", "content": default_system}] + conversations text = '' for turn_id, turn in enumerate(conversations): prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content']) text += prompt if add_assistant_prefix: prompt = TURN_PREFIX.format(role='assistant') text += prompt return text def chatml_format(message, history=None, system_prompt=None): conversations = [] system_prompt = system_prompt or "You are a helpful assistant." if history is not None and len(history) > 0: for i, (prompt, res) in enumerate(history): conversations.append({"role": "user", "content": prompt.strip()}) conversations.append({"role": "assistant", "content": res.strip()}) conversations.append({"role": "user", "content": message.strip()}) return chatml_chat_convo_format(conversations, True, default_system=system_prompt) def debug_chat_response_stream_multiturn(message, history): message_safety = safety_check(message, history=history) if message_safety is not None: # yield message_safety raise gr.Error(message_safety) message = "This is a debugging message" for i in range(len(message)): time.sleep(0.05) yield message[:i] def chat_response_stream_multiturn( message: str, history: List[Tuple[str, str]], temperature: float, max_tokens: int, frequency_penalty: float, presence_penalty: float, system_prompt: Optional[str] = SYSTEM_PROMPT_1, current_time: Optional[float] = None, # profile: Optional[gr.OAuthProfile] = None, ) -> str: """ gr.Number(value=temperature, label='Temperature (higher -> more random)'), gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'), gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'), gr.Textbox(value=sys_prompt, label='System prompt', lines=8, interactive=False), gr.Number(value=0, label='current_time', visible=False), """ global LOG_FILE, LOG_PATH if DEBUG: yield from debug_chat_response_stream_multiturn(message, history) return from vllm import LLM, SamplingParams """Build multi turn message is incoming prompt history don't have the current messauge """ global llm, RES_PRINTED assert llm is not None assert system_prompt.strip() != '', f'system prompt is empty' # is_by_pass = False if profile is None else profile.username in BYPASS_USERS is_by_pass = False tokenizer = llm.get_tokenizer() # force removing all vllm_abort(llm) temperature = float(temperature) frequency_penalty = float(frequency_penalty) max_tokens = int(max_tokens) message = message.strip() if GET_LOG_CMD != "" and message.strip() == GET_LOG_CMD: print_log_file() yield "Finish printed log. Please clear the chatbox now." return if len(message) == 0: raise gr.Error("The message cannot be empty!") message_safety = safety_check(message, history=history) if message_safety is not None and not is_by_pass: # yield message_safety raise gr.Error(message_safety) # history will be appended with message later on full_prompt = chatml_format(message.strip(), history=history, system_prompt=system_prompt) print(full_prompt) if len(tokenizer.encode(full_prompt)) >= 4050: raise gr.Error(f"Conversation or prompt is too long, please clear the chatbox or try shorter input.") sampling_params = SamplingParams( temperature=temperature, max_tokens=max_tokens, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, # stop=['', '', '<>', '<>', '[INST]', '[/INST]'], stop=['', '', '<|im_start|>', '<|im_end|>'], ) cur_out = None for j, gen in enumerate(vllm_generate_stream(llm, full_prompt, sampling_params)): if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0: # cur_out = cur_out.replace("\\n", "\n") # optionally check safety, and respond if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0: message_safety = safety_check(cur_out, history=None) if message_safety is not None and not is_by_pass: # yield message_safety raise gr.Error(message_safety) # return yield cur_out assert len(gen) == 1, f'{gen}' item = next(iter(gen.values())) cur_out = item.outputs[0].text #cur_out = "Our system is under maintenance, will be back soon!" if j >= max_tokens - 2: gr.Warning(f'The response hits limit of {max_tokens} tokens. Consider increase the max tokens parameter in the Additional Inputs.') # TODO: use current_time to register conversations, accoriding history and cur_out history_str = format_conversation(history + [[message, cur_out]]) print(f'@@@@@@@@@@\n{history_str}\n##########\n') maybe_log_conv_file(current_time, history, message, cur_out, temperature=temperature, frequency_penalty=frequency_penalty) if cur_out is not None and "\\n" in cur_out: print(f'double slash-n in cur_out:\n{cur_out}') cur_out = cur_out.replace("\\n", "\n") if cur_out is not None: yield cur_out message_safety = safety_check(cur_out, history=None) if message_safety is not None and not is_by_pass: # yield message_safety raise gr.Error(message_safety) # return def chat_response_stream_rag_multiturn( message: str, history: List[Tuple[str, str]], file_input: str, temperature: float, max_tokens: int, # frequency_penalty: float, # presence_penalty: float, system_prompt: Optional[str] = SYSTEM_PROMPT_1, current_time: Optional[float] = None, rag_num_docs: Optional[int] = 3, ): message = message.strip() frequency_penalty = FREQUENCE_PENALTY presence_penalty = PRESENCE_PENALTY if len(message) == 0: raise gr.Error("The message cannot be empty!") doc_context = maybe_get_doc_context(message, file_input, rag_num_docs=rag_num_docs) if doc_context is not None: message = f"{doc_context}\n\n{message}" yield from chat_response_stream_multiturn( message, history, temperature, max_tokens, frequency_penalty, presence_penalty, system_prompt, current_time ) def debug_generate_free_form_stream(message): output = " This is a debugging message...." for i in range(len(output)): time.sleep(0.05) yield message + output[:i] def generate_free_form_stream( message: str, temperature: float, max_tokens: int, frequency_penalty: float, presence_penalty: float, stop_strings: str = ',,<|im_start|>,<|im_end|>', current_time: Optional[float] = None, ) -> str: global LOG_FILE, LOG_PATH if DEBUG: yield from debug_generate_free_form_stream(message) return from vllm import LLM, SamplingParams """Build multi turn """ global llm, RES_PRINTED assert llm is not None tokenizer = llm.get_tokenizer() # force removing all vllm_abort(llm) temperature = float(temperature) frequency_penalty = float(frequency_penalty) max_tokens = int(max_tokens) stop_strings = [x.strip() for x in stop_strings.strip().split(",")] stop_strings = list(set(stop_strings + ['', '<|im_start|>'])) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_tokens, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stop=stop_strings, # ignore_eos=True, ) # full_prompt = message if len(message) == 0: raise gr.Error("The message cannot be empty!") message_safety = safety_check(message) if message_safety is not None: raise gr.Error(message_safety) if len(tokenizer.encode(message)) >= 4050: raise gr.Error(f"Prompt is too long!") cur_out = None for j, gen in enumerate(vllm_generate_stream(llm, message, sampling_params)): if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0: # optionally check safety, and respond if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0: message_safety = safety_check(cur_out, history=None) if message_safety is not None: raise gr.Error(message_safety) yield message + cur_out assert len(gen) == 1, f'{gen}' item = next(iter(gen.values())) cur_out = item.outputs[0].text #cur_out = "Our system is under maintenance, will be back soon!" if j >= max_tokens - 2: gr.Warning(f'The response hits limit of {max_tokens} tokens. Consider increase the max tokens parameter in the Additional Inputs.') if cur_out is not None: yield message + cur_out message_safety = safety_check(message + cur_out, history=None) if message_safety is not None: raise gr.Error(message_safety) def maybe_log_conv_file(current_time, history, message, response, **kwargs): global LOG_FILE if LOG_FILE is not None: my_history = history + [[message, response]] obj = { 'key': str(current_time), 'history': my_history } for k, v in kwargs.items(): obj[k] = v log_ = json.dumps(obj, ensure_ascii=False) LOG_FILE.write(log_ + "\n") LOG_FILE.flush() print(f'Wrote {obj["key"]} to {LOG_PATH}') def format_conversation(history): _str = '\n'.join([ ( f'<<>> {h[0]}\n' f'<<>> {h[1]}' ) for h in history ]) return _str def aggregate_convos(): from datetime import datetime global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS assert os.path.exists(LOG_PATH), f'{LOG_PATH} not found' convos = None irregular_count = 1 with open(LOG_PATH, 'r', encoding='utf-8') as f: convos = {} for i, l in enumerate(f): if l: item = json.loads(l) key = item['key'] try: key = float(key) except Exception as e: key = -1 if key > 0.0: item_key = datetime.fromtimestamp(key).strftime("%Y-%m-%d %H:%M:%S") else: key = item_key = f'e{irregular_count}' irregular_count += 1 item['key'] = item_key convos[key] = item return convos def maybe_upload_to_dataset(): from datetime import datetime global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS if SAVE_LOGS and os.path.exists(LOG_PATH) and DATA_SET_REPO_PATH != "": convos = aggregate_convos() AGG_LOG_PATH = LOG_PATH + ".agg.json" with open(AGG_LOG_PATH, 'w', encoding='utf-8') as fo: json.dump(convos, fo, indent=4, ensure_ascii=False) print(f'Saved aggregated json to {AGG_LOG_PATH}') try: from huggingface_hub import upload_file print(f'upload {AGG_LOG_PATH} to {DATA_SET_REPO_PATH}') upload_file( path_or_fileobj=AGG_LOG_PATH, path_in_repo=os.path.basename(AGG_LOG_PATH), repo_id=DATA_SET_REPO_PATH, token=HF_TOKEN, repo_type="dataset", create_pr=True ) except Exception as e: print(f'Failed to save to repo: {DATA_SET_REPO_PATH}|{str(e)}') def print_log_file(): global LOG_FILE, LOG_PATH if SAVE_LOGS and os.path.exists(LOG_PATH): with open(LOG_PATH, 'r', encoding='utf-8') as f: convos = aggregate_convos() print(f'Printing log from {LOG_PATH}') items = list(convos.items()) for k, v in items[-10:]: history = v.pop('history') print(f'######--{v}--#####') _str = format_conversation(history) print(_str) maybe_upload_to_dataset() def debug_chat_response_echo( message: str, history: List[Tuple[str, str]], temperature: float = 0.0, max_tokens: int = 4096, frequency_penalty: float = 0.4, presence_penalty: float = 0.0, current_time: Optional[float] = None, system_prompt: str = SYSTEM_PROMPT_1, ) -> str: global LOG_FILE import time time.sleep(0.5) if message.strip() == GET_LOG_CMD: print_log_file() yield "Finish printed log." return for i in range(len(message)): yield f"repeat: {current_time} {message[:i + 1]}" cur_out = f"repeat: {current_time} {message}" maybe_log_conv_file(current_time, history, message, cur_out, temperature=temperature, frequency_penalty=frequency_penalty) def check_model_path(model_path) -> str: assert os.path.exists(model_path), f'{model_path} not found' ckpt_info = "None" if os.path.isdir(model_path): if os.path.exists(f'{model_path}/info.txt'): with open(f'{model_path}/info.txt', 'r') as f: ckpt_info = f.read() print(f'Checkpoint info:\n{ckpt_info}\n-----') else: print(f'info.txt not found in {model_path}') print(f'model path dir: {list(os.listdir(model_path))}') return ckpt_info def maybe_delete_folder(): if IS_DELETE_FOLDER and DOWNLOAD_SNAPSHOT: import shutil print(f'DELETE ALL FILES IN {DELETE_FOLDER}') for filename in os.listdir(DELETE_FOLDER): file_path = os.path.join(DELETE_FOLDER, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) AGREE_POP_SCRIPTS = """ async () => { alert("To use our service, you are required to agree to the following terms:\\nYou must not use our service to generate any harmful, unethical or illegal content that violates local and international laws, including but not limited to hate speech, violence and deception.\\nThe service may collect user dialogue data for performance improvement, and reserves the right to distribute it under CC-BY or similar license. So do not enter any personal information!"); } """ def debug_file_function( files: Union[str, List[str]], prompt_mode: str, temperature: float, max_tokens: int, frequency_penalty: float, presence_penalty: float, stop_strings: str = "[STOP],,", current_time: Optional[float] = None, ): """This is only for debug purpose""" files = files if isinstance(files, list) else [files] print(files) filenames = [f.name for f in files] all_items = [] for fname in filenames: print(f'Reading {fname}') with open(fname, 'r', encoding='utf-8') as f: items = json.load(f) assert isinstance(items, list), f'invalid items from {fname} not list' all_items.extend(items) print(all_items) print(f'{prompt_mode} / {temperature} / {max_tokens}, {frequency_penalty}, {presence_penalty}') save_path = "./test.json" with open(save_path, 'w', encoding='utf-8') as f: json.dump(all_items, f, indent=4, ensure_ascii=False) for x in all_items: x['response'] = "Return response" print_items = all_items[:1] # print_json = json.dumps(print_items, indent=4, ensure_ascii=False) return save_path, print_items def validate_file_item(filename, index, item: Dict[str, str]): """ check safety for items in files """ message = item['prompt'].strip() if len(message) == 0: raise gr.Error(f'Prompt {index} empty') message_safety = safety_check(message, history=None) if message_safety is not None: raise gr.Error(f'Prompt {index} invalid: {message_safety}') tokenizer = llm.get_tokenizer() if llm is not None else None if tokenizer is None or len(tokenizer.encode(message)) >= BATCH_INFER_MAX_PROMPT_TOKENS: raise gr.Error(f"Prompt {index} too long, should be less than {BATCH_INFER_MAX_PROMPT_TOKENS} tokens") def read_validate_json_files(files: Union[str, List[str]]): files = files if isinstance(files, list) else [files] filenames = [f.name for f in files] all_items = [] for fname in filenames: # check each files print(f'Reading {fname}') with open(fname, 'r', encoding='utf-8') as f: items = json.load(f) assert isinstance(items, list), f'Data {fname} not list' assert all(isinstance(x, dict) for x in items), f'item in input file not list' assert all("prompt" in x for x in items), f'key prompt should be in dict item of input file' for i, x in enumerate(items): validate_file_item(fname, i, x) all_items.extend(items) if len(all_items) > BATCH_INFER_MAX_ITEMS: raise gr.Error(f"Num samples {len(all_items)} > {BATCH_INFER_MAX_ITEMS} allowed.") return all_items, filenames def remove_gradio_cache(exclude_names=None): """remove gradio cache to avoid flooding""" import shutil for root, dirs, files in os.walk('/tmp/gradio/'): for f in files: # if not any(f in ef for ef in except_files): if exclude_names is None or not any(ef in f for ef in exclude_names): print(f'Remove: {f}') os.unlink(os.path.join(root, f)) # for d in dirs: # # if not any(d in ef for ef in except_files): # if exclude_names is None or not any(ef in d for ef in exclude_names): # print(f'Remove d: {d}') # shutil.rmtree(os.path.join(root, d)) def maybe_upload_batch_set(pred_json_path): global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS if SAVE_LOGS and DATA_SET_REPO_PATH != "": try: from huggingface_hub import upload_file path_in_repo = "misc/" + os.path.basename(pred_json_path).replace(".json", f'.{time.time()}.json') print(f'upload {pred_json_path} to {DATA_SET_REPO_PATH}//{path_in_repo}') upload_file( path_or_fileobj=pred_json_path, path_in_repo=path_in_repo, repo_id=DATA_SET_REPO_PATH, token=HF_TOKEN, repo_type="dataset", create_pr=True ) except Exception as e: print(f'Failed to save to repo: {DATA_SET_REPO_PATH}|{str(e)}') def free_form_prompt(prompt, history=None, system_prompt=None): return prompt def batch_inference( files: Union[str, List[str]], prompt_mode: str, temperature: float, max_tokens: int, frequency_penalty: float, presence_penalty: float, stop_strings: str = "[STOP],,,<|im_start|>", current_time: Optional[float] = None, system_prompt: Optional[str] = SYSTEM_PROMPT_1 ): """ Handle file upload batch inference """ global LOG_FILE, LOG_PATH, DEBUG, llm, RES_PRINTED if DEBUG: return debug_file_function( files, prompt_mode, temperature, max_tokens, presence_penalty, stop_strings, current_time) from vllm import LLM, SamplingParams assert llm is not None # assert system_prompt.strip() != '', f'system prompt is empty' stop_strings = [x.strip() for x in stop_strings.strip().split(",")] tokenizer = llm.get_tokenizer() # force removing all # NOTE: need to make sure all cached items are removed!!!!!!!!! vllm_abort(llm) temperature = float(temperature) frequency_penalty = float(frequency_penalty) max_tokens = int(max_tokens) all_items, filenames = read_validate_json_files(files) # remove all items in /tmp/gradio/ remove_gradio_cache(exclude_names=['upload_chat.json', 'upload_few_shot.json']) if prompt_mode == 'chat': prompt_format_fn = chatml_format elif prompt_mode == 'few-shot': from functools import partial # prompt_format_fn = partial( # chatml_format, include_end_instruct=False # ) prompt_format_fn = free_form_prompt else: raise gr.Error(f'Wrong mode {prompt_mode}') full_prompts = [ prompt_format_fn( x['prompt'], [], sys_prompt=system_prompt ) for i, x in enumerate(all_items) ] print(f'{full_prompts[0]}\n') if any(len(tokenizer.encode(x)) >= 4090 for x in full_prompts): raise gr.Error(f"Some prompt is too long!") stop_seq = list(set(['', '', '<>', '<>', '[INST]', '[/INST]'] + stop_strings)) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_tokens, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stop=stop_seq ) generated = llm.generate(full_prompts, sampling_params, use_tqdm=False) responses = [g.outputs[0].text for g in generated] #responses = ["Our system is under maintenance, will be back soon!" for g in generated] if len(responses) != len(all_items): raise gr.Error(f'inconsistent lengths {len(responses)} != {len(all_items)}') for res, item in zip(responses, all_items): item['response'] = res save_path = BATCH_INFER_SAVE_TMP_FILE os.makedirs(os.path.dirname(save_path), exist_ok=True) with open(save_path, 'w', encoding='utf-8') as f: json.dump(all_items, f, indent=4, ensure_ascii=False) # You need to upload save_path as a new timestamp file. maybe_upload_batch_set(save_path) print_items = all_items[:2] # print_json = json.dumps(print_items, indent=4, ensure_ascii=False) return save_path, print_items # BATCH_INFER_MAX_ITEMS FILE_UPLOAD_DESCRIPTION = f"""Upload JSON file as list of dict with < {BATCH_INFER_MAX_ITEMS} items, \ each item has `prompt` key. We put guardrails to enhance safety, so do not input any harmful content or personal information! Re-upload the file after every submit. See the examples below. ``` [ {{"id": 0, "prompt": "Hello world"}} , {{"id": 1, "prompt": "Hi there?"}}] ``` """ CHAT_EXAMPLES = [ ["Hãy giải thích thuyết tương đối rộng."], ["Tolong bantu saya menulis email ke lembaga pemerintah untuk mencari dukungan finansial untuk penelitian AI."], ["แนะนำ 10 จุดหมายปลายทางในกรุงเทพฯ"], ] # performance items def create_free_form_generation_demo(): global short_model_path max_tokens = MAX_TOKENS temperature = TEMPERATURE frequence_penalty = FREQUENCE_PENALTY presence_penalty = PRESENCE_PENALTY introduction = """ ### Free-form | Put any context string (like few-shot prompts) """ with gr.Blocks() as demo_free_form: gr.Markdown(introduction) with gr.Row(): txt = gr.Textbox( scale=4, lines=16, show_label=False, placeholder="Enter any free form text and submit", container=False, ) with gr.Row(): free_submit_button = gr.Button('Submit') with gr.Row(): temp = gr.Number(value=temperature, label='Temperature', info="Higher -> more random") length = gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation') freq_pen = gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens') pres_pen = gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens') stop_strings = gr.Textbox(value=",,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1) free_submit_button.click( generate_free_form_stream, [txt, temp, length, freq_pen, pres_pen, stop_strings], txt ) return demo_free_form def create_file_upload_demo(): temperature = TEMPERATURE frequence_penalty = FREQUENCE_PENALTY presence_penalty = PRESENCE_PENALTY max_tokens = MAX_TOKENS demo_file_upload = gr.Interface( batch_inference, inputs=[ gr.File(file_count='single', file_types=['json']), gr.Radio(["chat", "few-shot"], value='chat', label="Chat or Few-shot mode", info="Chat's output more user-friendly, Few-shot's output more consistent with few-shot patterns."), gr.Number(value=temperature, label='Temperature', info="Higher -> more random"), gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation'), gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens'), gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens'), gr.Textbox(value=",,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1), gr.Number(value=0, label='current_time', visible=False), ], outputs=[ # "file", gr.File(label="Generated file"), # "json" gr.JSON(label='Example outputs (display 2 samples)') ], description=FILE_UPLOAD_DESCRIPTION, allow_flagging=False, examples=[ ["upload_chat.json", "chat", 0.2, 1024, 0.5, 0, ",,<|im_start|>"], ["upload_few_shot.json", "few-shot", 0.2, 128, 0.5, 0, ",,<|im_start|>,\\n"] ], cache_examples=False, ) return demo_file_upload def create_chat_demo(title=None, description=None): sys_prompt = SYSTEM_PROMPT_1 max_tokens = MAX_TOKENS temperature = TEMPERATURE frequence_penalty = FREQUENCE_PENALTY presence_penalty = PRESENCE_PENALTY demo_chat = gr.ChatInterface( chat_response_stream_multiturn, chatbot=ChatBot( label=MODEL_NAME, bubble_full_width=False, latex_delimiters=[ { "left": "$", "right": "$", "display": False}, { "left": "$$", "right": "$$", "display": True}, ], show_copy_button=True, ), textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200), submit_btn=gr.Button(value='Submit', variant="primary", scale=0), # ! consider preventing the stop button # stop_btn=None, title=title, description=description, additional_inputs=[ gr.Number(value=temperature, label='Temperature (higher -> more random)'), gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'), gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'), gr.Textbox(value=sys_prompt, label='System prompt', lines=4, interactive=False), gr.Number(value=0, label='current_time', visible=False), # ! Remove the system prompt textbox to avoid jailbreaking ], examples=CHAT_EXAMPLES, cache_examples=False ) return demo_chat def upload_file(file): # file_paths = [file.name for file in files] # return file_paths return file.name RAG_DESCRIPTION = """ * Upload a doc below to answer question about it (RAG). * Every question must be explicit and self-contained! Because each prompt will invoke a new RAG retrieval without considering previous conversations. (E.g: Dont prompt "Answer my previous question in details.") """ def create_chat_demo_rag(title=None, description=None): sys_prompt = SYSTEM_PROMPT_1 max_tokens = MAX_TOKENS temperature = TEMPERATURE frequence_penalty = FREQUENCE_PENALTY presence_penalty = PRESENCE_PENALTY description = description or RAG_DESCRIPTION # with gr.Blocks(title="RAG") as rag_demo: additional_inputs = [ gr.File(label='Upload Document', file_count='single', file_types=['pdf', 'docx', 'txt', 'json']), # gr.Textbox(value=None, label='Document path', lines=1, interactive=False), gr.Number(value=temperature, label='Temperature (higher -> more random)'), gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), # gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'), # gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'), gr.Textbox(value=sys_prompt, label='System prompt', lines=1, interactive=False), gr.Number(value=0, label='current_time', visible=False), ] demo_rag_chat = gr.ChatInterface( chat_response_stream_rag_multiturn, chatbot=gr.Chatbot( label=MODEL_NAME + "-RAG", bubble_full_width=False, latex_delimiters=[ { "left": "$", "right": "$", "display": False}, { "left": "$$", "right": "$$", "display": True}, ], show_copy_button=True, ), textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200), submit_btn=gr.Button(value='Submit', variant="primary", scale=0), # ! consider preventing the stop button # stop_btn=None, title=title, description=description, additional_inputs=additional_inputs, additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True), # examples=CHAT_EXAMPLES, cache_examples=False ) # with demo_rag_chat: # upload_button = gr.UploadButton("Click to Upload document", file_types=['pdf', 'docx', 'txt', 'json'], file_count="single") # upload_button.upload(upload_file, upload_button, additional_inputs[0]) # return demo_chat return demo_rag_chat def launch_demo(): global demo, llm, DEBUG, LOG_FILE model_desc = MODEL_DESC model_path = MODEL_PATH model_title = MODEL_TITLE hf_model_name = HF_MODEL_NAME tensor_parallel = TENSOR_PARALLEL assert tensor_parallel > 0 , f'{tensor_parallel} invalid' dtype = DTYPE sys_prompt = SYSTEM_PROMPT_1 max_tokens = MAX_TOKENS temperature = TEMPERATURE frequence_penalty = FREQUENCE_PENALTY presence_penalty = PRESENCE_PENALTY ckpt_info = "None" print( f'Launch config: ' f'\n| model_title=`{model_title}` ' f'\n| max_tokens={max_tokens} ' f'\n| dtype={dtype} ' f'\n| tensor_parallel={tensor_parallel} ' f'\n| IS_DELETE_FOLDER={IS_DELETE_FOLDER} ' f'\n| STREAM_YIELD_MULTIPLE={STREAM_YIELD_MULTIPLE} ' f'\n| STREAM_CHECK_MULTIPLE={STREAM_CHECK_MULTIPLE} ' f'\n| DISPLAY_MODEL_PATH={DISPLAY_MODEL_PATH} ' f'\n| LANG_BLOCK_HISTORY={LANG_BLOCK_HISTORY} ' f'\n| frequence_penalty={frequence_penalty} ' f'\n| presence_penalty={presence_penalty} ' f'\n| temperature={temperature} ' # f'\n| hf_model_name={hf_model_name} ' f'\n| model_path={model_path} ' f'\n| DOWNLOAD_SNAPSHOT={DOWNLOAD_SNAPSHOT} ' f'\n| gpu_memory_utilization={gpu_memory_utilization} ' f'\n| LOG_PATH={LOG_PATH} | SAVE_LOGS={SAVE_LOGS} ' f'\n| Desc={model_desc}' ) if DEBUG: model_desc += "\n
!!!!! This is in debug mode, responses will copy original" # response_fn = debug_chat_response_echo response_fn = chat_response_stream_multiturn print(f'Creating in DEBUG MODE') if SAVE_LOGS: LOG_FILE = open(LOG_PATH, 'a', encoding='utf-8') else: # ! load the model maybe_delete_folder() if DOWNLOAD_SNAPSHOT: print(f'Downloading from HF_MODEL_NAME={hf_model_name} -> {model_path}') if HF_TOKEN is not None: print(f'Load with HF_TOKEN: {HF_TOKEN}') snapshot_download(hf_model_name, local_dir=model_path, use_auth_token=True, token=HF_TOKEN) else: snapshot_download(hf_model_name, local_dir=model_path) import vllm from vllm import LLM print(F'VLLM: {vllm.__version__}') ckpt_info = check_model_path(model_path) print(f'Load path: {model_path} | {ckpt_info}') if QUANTIZATION == 'awq': print(F'Load model in int4 quantization') llm = LLM(model=model_path, dtype="float16", tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, quantization="awq", max_model_len=8192) else: llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, max_model_len=8192) try: print(llm.llm_engine.workers[0].model) except Exception as e: print(f'Cannot print model worker: {e}') try: llm.llm_engine.scheduler_config.max_model_len = 8192 llm.llm_engine.scheduler_config.max_num_batched_tokens = 8192 # llm.llm_engine.tokenizer.add_special_tokens = False except Exception as e: print(f'Cannot set parameters: {e}') print(f'Use system prompt:\n{sys_prompt}') response_fn = chat_response_stream_multiturn print(F'respond: {response_fn}') if SAVE_LOGS: LOG_FILE = open(LOG_PATH, 'a', encoding='utf-8') if ENABLE_BATCH_INFER: # demo_file_upload = create_file_upload_demo() demo_free_form = create_free_form_generation_demo() demo_chat = create_chat_demo() demo_chat_rag = create_chat_demo_rag(description=RAG_DESCRIPTION) descriptions = model_desc if DISPLAY_MODEL_PATH: descriptions += f"
{path_markdown.format(model_path=model_path)}" demo = CustomTabbedInterface( interface_list=[ demo_chat, demo_chat_rag, demo_free_form, # demo_file_upload, ], tab_names=[ "Chat Interface", "RAG Chat Interface", "Text completion", # "Batch Inference", ], title=f"{model_title}", description=descriptions, ) else: descriptions = model_desc if DISPLAY_MODEL_PATH: descriptions += f"
{path_markdown.format(model_path=model_path)}" demo = create_chat_demo(title=f"{model_title}", description=descriptions) demo.title = MODEL_NAME with demo: if DATA_SET_REPO_PATH != "": try: from performance_plot import attach_plot_to_demo attach_plot_to_demo(demo) except Exception as e: print(f'Fail to load DEMO plot: {str(e)}') gr.Markdown(cite_markdown) if DISPLAY_MODEL_PATH: gr.Markdown(path_markdown.format(model_path=model_path)) if ENABLE_AGREE_POPUP: demo.load(None, None, None, _js=AGREE_POP_SCRIPTS) # login_btn = gr.LoginButton() demo.queue(api_open=False) return demo if __name__ == "__main__": demo = launch_demo() demo.launch(show_api=False, allowed_paths=["seal_logo.png"])