Spaces:
Running
on
Zero
Running
on
Zero
phi
commited on
Commit
·
a572fd2
1
Parent(s):
5100e68
change files
Browse files- app.py +254 -133
- requirements.txt +1 -0
app.py
CHANGED
@@ -28,10 +28,25 @@ from typing import List, Optional, Union, Dict, Tuple
|
|
28 |
from tqdm.auto import tqdm
|
29 |
from huggingface_hub import snapshot_download
|
30 |
|
31 |
-
DEBUG = True
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
35 |
# vllm import
|
36 |
from vllm import LLM, SamplingParams
|
37 |
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
@@ -51,6 +66,22 @@ if not DEBUG:
|
|
51 |
_MODEL_REGISTRY['FasterLlamaForCausalLM'] = LlamaForCausalLM
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def hf_model_weights_iterator(
|
55 |
model_name_or_path: str,
|
56 |
cache_dir: Optional[str] = None,
|
@@ -208,26 +239,26 @@ def llama_load_weights(
|
|
208 |
if "rotary_emb.inv_freq" in name:
|
209 |
continue
|
210 |
|
211 |
-
# if "embed_tokens" in name or "lm_head" in name:
|
212 |
-
# param = state_dict[name]
|
213 |
-
# # Consider padding in the vocab size.
|
214 |
-
# padded_vocab_size = (param.shape[0] * tp_size)
|
215 |
-
# # num_extra_rows = padded_vocab_size - self.config.vocab_size
|
216 |
-
# num_extra_rows = padded_vocab_size - loaded_weight.size(0)
|
217 |
-
# load_size = loaded_weight.size()
|
218 |
-
# extra_rows = torch.empty(num_extra_rows,
|
219 |
-
# loaded_weight.shape[1])
|
220 |
-
# extra_rows = extra_rows.to(loaded_weight)
|
221 |
-
# loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
|
222 |
-
# if num_extra_rows > 0:
|
223 |
-
# print(f'Add empty to {num_extra_rows} extra row for {name}')
|
224 |
-
# print(f'Load: {name} | {padded_vocab_size=} | {self.config.vocab_size=} | {num_extra_rows=} | {param.size()=} | {loaded_weight.size()=} | {load_size=}')
|
225 |
-
|
226 |
if "embed_tokens" in name or "lm_head" in name:
|
227 |
param = state_dict[name]
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
is_attention_weight = False
|
233 |
for weight_name, shard_size, offset in attention_weight_specs:
|
@@ -428,29 +459,84 @@ class ChatBot(gr.Chatbot):
|
|
428 |
):
|
429 |
x = super()._postprocess_chat_messages(chat_message)
|
430 |
if isinstance(x, str):
|
431 |
-
x = x.replace("\n", "<br>")
|
432 |
return x
|
433 |
|
434 |
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
else:
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
|
453 |
|
|
|
|
|
454 |
def chat_response(message, history, temperature: float, max_tokens: int, system_prompt: str = '') -> str:
|
455 |
global llm
|
456 |
assert llm is not None
|
@@ -466,7 +552,6 @@ def chat_response(message, history, temperature: float, max_tokens: int, system_
|
|
466 |
sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens)
|
467 |
gen = llm.generate(message, sampling_params)
|
468 |
out = gen[0].outputs[0].text
|
469 |
-
# print(f'{message}<<<{out}>>>')
|
470 |
return f'{out}'
|
471 |
|
472 |
|
@@ -493,10 +578,6 @@ def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
|
|
493 |
while self.llm_engine.has_unfinished_requests():
|
494 |
step_outputs = self.llm_engine.step()
|
495 |
for output in step_outputs:
|
496 |
-
# if output.finished:
|
497 |
-
# outputs.append(output)
|
498 |
-
# if use_tqdm:
|
499 |
-
# pbar.update(1)
|
500 |
outputs[output.request_id] = output
|
501 |
# outputs = sorted(outputs, key=lambda x: int(x.request_id))
|
502 |
if len(outputs) > 0:
|
@@ -565,53 +646,71 @@ def vllm_generate_stream(
|
|
565 |
yield from _vllm_run_engine(self, use_tqdm)
|
566 |
|
567 |
|
568 |
-
def chat_response_stream(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
message: str,
|
570 |
-
history: List[Tuple[str, str]]
|
571 |
-
temperature: float,
|
572 |
-
max_tokens: int,
|
573 |
-
frequency_penalty: float,
|
574 |
-
system_prompt: str
|
575 |
) -> str:
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
# chat version, add system prompt
|
586 |
-
message = llama_chat_sys_input_seq_constructor(
|
587 |
-
message.strip(),
|
588 |
-
sys_prompt=system_prompt
|
589 |
-
)
|
590 |
-
sampling_params = SamplingParams(
|
591 |
-
temperature=temperature, max_tokens=max_tokens,
|
592 |
-
frequency_penalty=frequency_penalty,
|
593 |
-
)
|
594 |
-
cur_out = None
|
595 |
-
for gen in vllm_generate_stream(llm, message, sampling_params):
|
596 |
-
if cur_out is not None:
|
597 |
-
yield cur_out
|
598 |
-
assert len(gen) == 1, f'{gen}'
|
599 |
-
item = next(iter(gen.values()))
|
600 |
-
cur_out = item.outputs[0].text
|
601 |
-
if not RES_PRINTED:
|
602 |
-
print(f'{message}<<<{cur_out}>>>')
|
603 |
-
RES_PRINTED = True
|
604 |
-
if cur_out is not None:
|
605 |
-
yield cur_out
|
606 |
-
|
607 |
|
|
|
608 |
def chat_response_stream_multiturn(
|
609 |
message: str,
|
610 |
history: List[Tuple[str, str]],
|
611 |
temperature: float,
|
612 |
max_tokens: int,
|
613 |
frequency_penalty: float,
|
614 |
-
system_prompt: str
|
615 |
) -> str:
|
616 |
"""Build multi turn
|
617 |
<bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
|
@@ -631,27 +730,46 @@ def chat_response_stream_multiturn(
|
|
631 |
frequency_penalty = float(frequency_penalty)
|
632 |
max_tokens = int(max_tokens)
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
# history.append([message, None])
|
635 |
# history will be appended with message later on
|
636 |
full_prompt = llama_chat_multiturn_sys_input_seq_constructor(
|
637 |
message, history, sys_prompt=system_prompt
|
638 |
)
|
|
|
639 |
sampling_params = SamplingParams(
|
640 |
temperature=temperature, max_tokens=max_tokens,
|
641 |
frequency_penalty=frequency_penalty,
|
642 |
)
|
643 |
cur_out = None
|
644 |
-
for gen in vllm_generate_stream(llm, full_prompt, sampling_params):
|
645 |
-
|
|
|
646 |
yield cur_out
|
647 |
assert len(gen) == 1, f'{gen}'
|
648 |
item = next(iter(gen.values()))
|
649 |
cur_out = item.outputs[0].text
|
650 |
-
|
651 |
-
|
652 |
-
|
|
|
653 |
if cur_out is not None:
|
654 |
yield cur_out
|
|
|
|
|
|
|
|
|
|
|
655 |
|
656 |
|
657 |
def debug_chat_response_echo(
|
@@ -662,16 +780,26 @@ def debug_chat_response_echo(
|
|
662 |
frequency_penalty: float = 0.4,
|
663 |
system_prompt: str = SYSTEM_PROMPT_1,
|
664 |
) -> str:
|
|
|
|
|
665 |
yield f"repeat: {message}"
|
666 |
|
667 |
|
668 |
# ============ CONSTANT ============
|
669 |
-
|
670 |
-
|
|
|
|
|
671 |
MODEL_DESC = """
|
672 |
-
|
673 |
-
|
674 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
675 |
If you find our project useful, hope you can star our repo and cite our paper as follows:
|
676 |
```
|
677 |
@article{damonlpsg2023seallm,
|
@@ -680,22 +808,21 @@ If you find our project useful, hope you can star our repo and cite our paper as
|
|
680 |
year = 2023,
|
681 |
}
|
682 |
```
|
683 |
-
""".strip()
|
684 |
-
|
685 |
-
|
686 |
-
cite_markdown = """
|
687 |
"""
|
688 |
-
# journal = {arXiv preprint arXiv:2306.02858}
|
689 |
-
# url = {https://arxiv.org/abs/2306.02858}
|
690 |
|
|
|
|
|
|
|
691 |
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
MODEL_PATH = os.environ.get("MODEL_PATH", "notfound, please set `export MODEL_PATH=`")
|
697 |
|
698 |
|
|
|
|
|
|
|
|
|
699 |
|
700 |
|
701 |
def launch():
|
@@ -707,26 +834,29 @@ def launch():
|
|
707 |
assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
|
708 |
dtype = DTYPE
|
709 |
sys_prompt = SYSTEM_PROMPT_1
|
710 |
-
max_tokens =
|
|
|
711 |
|
712 |
if DEBUG:
|
713 |
model_desc += "\n<br>!!!!! This is in debug mode, responses will be copy original"
|
714 |
response_fn = debug_chat_response_echo
|
715 |
else:
|
716 |
# ! load the model
|
|
|
717 |
assert os.path.exists(model_path), f'{model_path} not found'
|
|
|
|
|
718 |
llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel)
|
719 |
|
720 |
print(f'Use system prompt:\n{sys_prompt}')
|
721 |
|
722 |
-
# response_fn = chat_response_stream_multiturn if args.multiturn else chat_response_stream
|
723 |
response_fn = chat_response_stream_multiturn
|
724 |
print(F'respond: {response_fn}')
|
725 |
|
726 |
demo = gr.ChatInterface(
|
727 |
response_fn,
|
728 |
chatbot=ChatBot(
|
729 |
-
|
730 |
bubble_full_width=False,
|
731 |
latex_delimiters=[
|
732 |
{ "left": "$", "right": "$", "display": False},
|
@@ -735,7 +865,8 @@ def launch():
|
|
735 |
),
|
736 |
textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
|
737 |
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
|
738 |
-
#
|
|
|
739 |
title=f"{model_title}",
|
740 |
description=f"{model_desc}",
|
741 |
# ! decide if can change the system prompt.
|
@@ -743,38 +874,16 @@ def launch():
|
|
743 |
gr.Number(value=0, label='Temperature (higher -> more random)'),
|
744 |
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
|
745 |
gr.Number(value=0.4, label='Frequency penalty (> 0 encourage new tokens)'),
|
746 |
-
gr.Textbox(value=sys_prompt, label='System prompt', lines=8)
|
|
|
747 |
)
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
# chatbot=ChatBot(
|
753 |
-
# bubble_full_width=False,
|
754 |
-
# latex_delimiters=[
|
755 |
-
# { "left": "$", "right": "$", "display": False},
|
756 |
-
# { "left": "$$", "right": "$$", "display": True},
|
757 |
-
# ]
|
758 |
-
# ),
|
759 |
-
# textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
|
760 |
-
# submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
|
761 |
-
# # stop_btn=None,
|
762 |
-
# title=f"{model_title}",
|
763 |
-
# description=f"{model_desc}",
|
764 |
-
# # ! decide if can change the system prompt.
|
765 |
-
# additional_inputs=[
|
766 |
-
# gr.Number(value=0, label='Temperature (higher -> more random)'),
|
767 |
-
# gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
|
768 |
-
# gr.Number(value=0.4, label='Frequency penalty (> 0 encourage new tokens)'),
|
769 |
-
# gr.Textbox(value=sys_prompt, label='System prompt', lines=8)
|
770 |
-
# ],
|
771 |
-
# )
|
772 |
-
|
773 |
-
# gr.Markdown(cite_markdown)
|
774 |
|
775 |
demo.queue()
|
776 |
-
|
777 |
-
demo.launch()
|
778 |
|
779 |
|
780 |
def main():
|
@@ -793,7 +902,19 @@ export CUDA_VISIBLE_DEVICES=0
|
|
793 |
export MODEL_PATH=${dataroot}/hf_train/pretrain_lm/swpn/merlion13s108Hi8kPretFlCW8k.LMFromHf.a.gc.t5k0.vizhthid.mean_std.TrainTask.NLNL.Multi.Vi.FSePlCq13M.FSePlCq13M.m4k.b8.lr1e5.linear.wa0k.ms858k.grac1.se1.8g.v4c.zfsdp/step_4000
|
794 |
export MODEL_PATH=${dataroot}/llama-2-7b-lxxp-faster
|
795 |
export MODEL_PATH=${dataroot}/llama-2-7b-chat-xp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
796 |
python app.py
|
797 |
|
798 |
|
|
|
|
|
|
|
799 |
"""
|
|
|
28 |
from tqdm.auto import tqdm
|
29 |
from huggingface_hub import snapshot_download
|
30 |
|
|
|
31 |
|
32 |
+
# @@ constants ================
|
33 |
+
|
34 |
+
DEBUG = bool(int(os.environ.get("DEBUG", "1")))
|
35 |
+
BLOCK_ZH = bool(int(os.environ.get("BLOCK_ZH", "0")))
|
36 |
+
|
37 |
+
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
|
38 |
+
DTYPE = os.environ.get("DTYPE", "bfloat16")
|
39 |
+
# DTYPE = 'float16'
|
40 |
+
|
41 |
+
# MODEL_PATH = os.environ.get("MODEL_PATH", "notfound, please set `export MODEL_PATH=`")
|
42 |
+
MODEL_PATH = os.environ.get("MODEL_PATH", "seal_13b_a")
|
43 |
+
PORT = int(os.environ.get("PORT", "7860"))
|
44 |
+
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
|
45 |
+
MAX_TOKENS = 2048
|
46 |
|
47 |
+
# @@ constants ================
|
48 |
+
if not DEBUG:
|
49 |
+
|
50 |
# vllm import
|
51 |
from vllm import LLM, SamplingParams
|
52 |
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
|
|
66 |
_MODEL_REGISTRY['FasterLlamaForCausalLM'] = LlamaForCausalLM
|
67 |
|
68 |
|
69 |
+
def _detect_lang(text):
|
70 |
+
from langdetect import detect as detect_lang
|
71 |
+
from langdetect.detector import LangDetectException
|
72 |
+
dlang = None
|
73 |
+
try:
|
74 |
+
dlang = detect_lang(text)
|
75 |
+
except Exception as e:
|
76 |
+
# No features in text.
|
77 |
+
print(f'Error: {e}')
|
78 |
+
if "No features in text." in str(e):
|
79 |
+
return "en"
|
80 |
+
else:
|
81 |
+
return "zh"
|
82 |
+
return dlang
|
83 |
+
|
84 |
+
|
85 |
def hf_model_weights_iterator(
|
86 |
model_name_or_path: str,
|
87 |
cache_dir: Optional[str] = None,
|
|
|
239 |
if "rotary_emb.inv_freq" in name:
|
240 |
continue
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
if "embed_tokens" in name or "lm_head" in name:
|
243 |
param = state_dict[name]
|
244 |
+
# Consider padding in the vocab size.
|
245 |
+
padded_vocab_size = (param.shape[0] * tp_size)
|
246 |
+
# num_extra_rows = padded_vocab_size - self.config.vocab_size
|
247 |
+
num_extra_rows = padded_vocab_size - loaded_weight.size(0)
|
248 |
+
load_size = loaded_weight.size()
|
249 |
+
extra_rows = torch.empty(num_extra_rows,
|
250 |
+
loaded_weight.shape[1])
|
251 |
+
extra_rows = extra_rows.to(loaded_weight)
|
252 |
+
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
|
253 |
+
if num_extra_rows > 0:
|
254 |
+
print(f'Add empty to {num_extra_rows} extra row for {name}')
|
255 |
+
print(f'Load: {name} | {padded_vocab_size=} | {self.config.vocab_size=} | {num_extra_rows=} | {param.size()=} | {loaded_weight.size()=} | {load_size=}')
|
256 |
+
|
257 |
+
# if "embed_tokens" in name or "lm_head" in name:
|
258 |
+
# param = state_dict[name]
|
259 |
+
# load_padded_tensor_parallel_vocab(param, loaded_weight, tensor_model_parallel_rank)
|
260 |
+
# loaded += 1
|
261 |
+
# continue
|
262 |
|
263 |
is_attention_weight = False
|
264 |
for weight_name, shard_size, offset in attention_weight_specs:
|
|
|
459 |
):
|
460 |
x = super()._postprocess_chat_messages(chat_message)
|
461 |
if isinstance(x, str):
|
462 |
+
x = x.strip().replace("\n", "<br>")
|
463 |
return x
|
464 |
|
465 |
|
466 |
+
# gr.ChatInterface
|
467 |
+
from gradio.components import Button
|
468 |
+
from gradio.events import Dependency, EventListenerMethod
|
469 |
+
|
470 |
+
|
471 |
+
def _setup_stop_events(
|
472 |
+
self, event_triggers: list[EventListenerMethod], event_to_cancel: Dependency
|
473 |
+
) -> None:
|
474 |
+
event_triggers = event_triggers if isinstance(event_triggers, (list, tuple)) else [event_triggers]
|
475 |
+
if self.stop_btn and self.is_generator:
|
476 |
+
if self.submit_btn:
|
477 |
+
for event_trigger in event_triggers:
|
478 |
+
event_trigger(
|
479 |
+
lambda: (
|
480 |
+
Button.update(visible=False),
|
481 |
+
Button.update(visible=True),
|
482 |
+
),
|
483 |
+
None,
|
484 |
+
[self.submit_btn, self.stop_btn],
|
485 |
+
api_name=False,
|
486 |
+
queue=False,
|
487 |
+
)
|
488 |
+
event_to_cancel.then(
|
489 |
+
lambda: (Button.update(visible=True), Button.update(visible=False)),
|
490 |
+
None,
|
491 |
+
[self.submit_btn, self.stop_btn],
|
492 |
+
api_name=False,
|
493 |
+
queue=False,
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
for event_trigger in event_triggers:
|
497 |
+
event_trigger(
|
498 |
+
lambda: Button.update(visible=True),
|
499 |
+
None,
|
500 |
+
[self.stop_btn],
|
501 |
+
api_name=False,
|
502 |
+
queue=False,
|
503 |
+
)
|
504 |
+
event_to_cancel.then(
|
505 |
+
lambda: Button.update(visible=False),
|
506 |
+
None,
|
507 |
+
[self.stop_btn],
|
508 |
+
api_name=False,
|
509 |
+
queue=False,
|
510 |
+
)
|
511 |
+
self.stop_btn.click(
|
512 |
+
None,
|
513 |
+
None,
|
514 |
+
None,
|
515 |
+
cancels=event_to_cancel,
|
516 |
+
api_name=False,
|
517 |
+
)
|
518 |
else:
|
519 |
+
if self.submit_btn:
|
520 |
+
for event_trigger in event_triggers:
|
521 |
+
event_trigger(
|
522 |
+
lambda: Button.update(interactive=False),
|
523 |
+
None,
|
524 |
+
[self.submit_btn],
|
525 |
+
api_name=False,
|
526 |
+
queue=False,
|
527 |
+
)
|
528 |
+
event_to_cancel.then(
|
529 |
+
lambda: Button.update(interactive=True),
|
530 |
+
None,
|
531 |
+
[self.submit_btn],
|
532 |
+
api_name=False,
|
533 |
+
queue=False,
|
534 |
+
)
|
535 |
|
536 |
|
537 |
|
538 |
+
gr.ChatInterface._setup_stop_events = _setup_stop_events
|
539 |
+
|
540 |
def chat_response(message, history, temperature: float, max_tokens: int, system_prompt: str = '') -> str:
|
541 |
global llm
|
542 |
assert llm is not None
|
|
|
552 |
sampling_params = SamplingParams(temperature=temperature, max_tokens=max_tokens)
|
553 |
gen = llm.generate(message, sampling_params)
|
554 |
out = gen[0].outputs[0].text
|
|
|
555 |
return f'{out}'
|
556 |
|
557 |
|
|
|
578 |
while self.llm_engine.has_unfinished_requests():
|
579 |
step_outputs = self.llm_engine.step()
|
580 |
for output in step_outputs:
|
|
|
|
|
|
|
|
|
581 |
outputs[output.request_id] = output
|
582 |
# outputs = sorted(outputs, key=lambda x: int(x.request_id))
|
583 |
if len(outputs) > 0:
|
|
|
646 |
yield from _vllm_run_engine(self, use_tqdm)
|
647 |
|
648 |
|
649 |
+
# def chat_response_stream(
|
650 |
+
# message: str,
|
651 |
+
# history: List[Tuple[str, str]],
|
652 |
+
# temperature: float,
|
653 |
+
# max_tokens: int,
|
654 |
+
# frequency_penalty: float,
|
655 |
+
# system_prompt: str
|
656 |
+
# ) -> str:
|
657 |
+
# global llm, RES_PRINTED
|
658 |
+
# assert llm is not None
|
659 |
+
# # force removing all
|
660 |
+
# vllm_abort(llm)
|
661 |
+
|
662 |
+
# temperature = float(temperature)
|
663 |
+
# frequency_penalty = float(frequency_penalty)
|
664 |
+
# max_tokens = int(max_tokens)
|
665 |
+
# if system_prompt.strip() != '':
|
666 |
+
# # chat version, add system prompt
|
667 |
+
# message = llama_chat_sys_input_seq_constructor(
|
668 |
+
# message.strip(),
|
669 |
+
# sys_prompt=system_prompt
|
670 |
+
# )
|
671 |
+
# sampling_params = SamplingParams(
|
672 |
+
# temperature=temperature, max_tokens=max_tokens,
|
673 |
+
# frequency_penalty=frequency_penalty,
|
674 |
+
# )
|
675 |
+
# cur_out = None
|
676 |
+
# for j, gen in enumerate(vllm_generate_stream(llm, message, sampling_params)):
|
677 |
+
# if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
|
678 |
+
# yield cur_out
|
679 |
+
# assert len(gen) == 1, f'{gen}'
|
680 |
+
# item = next(iter(gen.values()))
|
681 |
+
# cur_out = item.outputs[0].text
|
682 |
+
# if not RES_PRINTED:
|
683 |
+
# print(f'{message}<<<{cur_out}>>>')
|
684 |
+
# RES_PRINTED = True
|
685 |
+
# if cur_out is not None:
|
686 |
+
# yield cur_out
|
687 |
+
|
688 |
+
|
689 |
+
BLOCK_MESSAGE = """Sorry, Chinese is not currently supported. Please clear the chat box for a new conversation.
|
690 |
+
抱歉,目前不支持中文。 请清除聊天框以进行新对话。"""
|
691 |
+
|
692 |
+
def block_zh(
|
693 |
message: str,
|
694 |
+
history: List[Tuple[str, str]]
|
|
|
|
|
|
|
|
|
695 |
) -> str:
|
696 |
+
# if any((BLOCK_MESSAGE in x[0].strip() or BLOCK_MESSAGE in x[1].strip()) for x in history):
|
697 |
+
if any((BLOCK_MESSAGE in x[1].strip()) for x in history):
|
698 |
+
return True
|
699 |
+
elif 'zh' in _detect_lang(message):
|
700 |
+
print(f'Detect zh: {message}')
|
701 |
+
return True
|
702 |
+
# ! optionally detect every responses message
|
703 |
+
else:
|
704 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
|
706 |
+
# 抱歉,目前不支持中文。
|
707 |
def chat_response_stream_multiturn(
|
708 |
message: str,
|
709 |
history: List[Tuple[str, str]],
|
710 |
temperature: float,
|
711 |
max_tokens: int,
|
712 |
frequency_penalty: float,
|
713 |
+
system_prompt: Optional[str] = SYSTEM_PROMPT_1
|
714 |
) -> str:
|
715 |
"""Build multi turn
|
716 |
<bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
|
|
|
730 |
frequency_penalty = float(frequency_penalty)
|
731 |
max_tokens = int(max_tokens)
|
732 |
|
733 |
+
message = message.strip()
|
734 |
+
|
735 |
+
# detect_ = _detect_lang(message)
|
736 |
+
# print(f'Message language: {detect_}')
|
737 |
+
|
738 |
+
# ! lang detect
|
739 |
+
if BLOCK_ZH:
|
740 |
+
if block_zh(message, history):
|
741 |
+
yield BLOCK_MESSAGE
|
742 |
+
return
|
743 |
+
|
744 |
# history.append([message, None])
|
745 |
# history will be appended with message later on
|
746 |
full_prompt = llama_chat_multiturn_sys_input_seq_constructor(
|
747 |
message, history, sys_prompt=system_prompt
|
748 |
)
|
749 |
+
# print(full_prompt)
|
750 |
sampling_params = SamplingParams(
|
751 |
temperature=temperature, max_tokens=max_tokens,
|
752 |
frequency_penalty=frequency_penalty,
|
753 |
)
|
754 |
cur_out = None
|
755 |
+
# for gen in vllm_generate_stream(llm, full_prompt, sampling_params):
|
756 |
+
for j, gen in enumerate(vllm_generate_stream(llm, full_prompt, sampling_params)):
|
757 |
+
if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
|
758 |
yield cur_out
|
759 |
assert len(gen) == 1, f'{gen}'
|
760 |
item = next(iter(gen.values()))
|
761 |
cur_out = item.outputs[0].text
|
762 |
+
|
763 |
+
# if not RES_PRINTED:
|
764 |
+
print(f'{full_prompt}<<<{cur_out}>>>\n')
|
765 |
+
# RES_PRINTED = True
|
766 |
if cur_out is not None:
|
767 |
yield cur_out
|
768 |
+
|
769 |
+
# print(f'Output: {_detect_lang(cur_out)}')
|
770 |
+
if BLOCK_ZH:
|
771 |
+
if "zh" in _detect_lang(cur_out):
|
772 |
+
yield BLOCK_MESSAGE
|
773 |
|
774 |
|
775 |
def debug_chat_response_echo(
|
|
|
780 |
frequency_penalty: float = 0.4,
|
781 |
system_prompt: str = SYSTEM_PROMPT_1,
|
782 |
) -> str:
|
783 |
+
import time
|
784 |
+
time.sleep(0.5)
|
785 |
yield f"repeat: {message}"
|
786 |
|
787 |
|
788 |
# ============ CONSTANT ============
|
789 |
+
# https://github.com/gradio-app/gradio/issues/884
|
790 |
+
MODEL_NAME = "SeaL-13B"
|
791 |
+
MODEL_TITLE = "SeaL-13B - An Assistant for South East Asian Languages"
|
792 |
+
# ! add icon: "<img src='file/lion.jpg' alt='image One'>"
|
793 |
MODEL_DESC = """
|
794 |
+
<span style="font-size: larger">
|
795 |
+
This is a DAMO SeaL-13B chatbot assistant built by DAMO Academy, Alibaba Group. It can produce helpful responses in English 🇬🇧, Vietnamese 🇻🇳, Indonesian 🇮🇩 and Thai 🇹🇭.
|
796 |
+
</span>
|
797 |
+
""".strip()
|
798 |
+
# <br>
|
799 |
+
|
800 |
+
|
801 |
+
cite_markdown = """
|
802 |
+
### Citation
|
803 |
If you find our project useful, hope you can star our repo and cite our paper as follows:
|
804 |
```
|
805 |
@article{damonlpsg2023seallm,
|
|
|
808 |
year = 2023,
|
809 |
}
|
810 |
```
|
|
|
|
|
|
|
|
|
811 |
"""
|
|
|
|
|
812 |
|
813 |
+
warning_markdown = """
|
814 |
+
### Warning:
|
815 |
+
<span style="color: red">The chatbot may produce inaccurate and harmful information about people, places, or facts.</span>
|
816 |
|
817 |
+
<span style="color: red">We strongly advise against misuse of the chatbot to knowingly generate harmful or unethical content, \
|
818 |
+
or content that violates locally applicable and international laws or regulations, including hate speech, violence, pornography, deception, etc!</span>
|
819 |
+
"""
|
|
|
|
|
820 |
|
821 |
|
822 |
+
path_markdown = """
|
823 |
+
#### Model path:
|
824 |
+
{model_path}
|
825 |
+
"""
|
826 |
|
827 |
|
828 |
def launch():
|
|
|
834 |
assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
|
835 |
dtype = DTYPE
|
836 |
sys_prompt = SYSTEM_PROMPT_1
|
837 |
+
max_tokens = MAX_TOKENS
|
838 |
+
print(f'Launch config: {model_path=} / {model_title=} / {tensor_parallel=} / {dtype=} / {max_tokens}\n{SYSTEM_PROMPT_1} | {BLOCK_ZH=}')
|
839 |
|
840 |
if DEBUG:
|
841 |
model_desc += "\n<br>!!!!! This is in debug mode, responses will be copy original"
|
842 |
response_fn = debug_chat_response_echo
|
843 |
else:
|
844 |
# ! load the model
|
845 |
+
import vllm
|
846 |
assert os.path.exists(model_path), f'{model_path} not found'
|
847 |
+
print(F'VLLM: {vllm.__version__}')
|
848 |
+
print(f'Load path: {model_path}')
|
849 |
llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel)
|
850 |
|
851 |
print(f'Use system prompt:\n{sys_prompt}')
|
852 |
|
|
|
853 |
response_fn = chat_response_stream_multiturn
|
854 |
print(F'respond: {response_fn}')
|
855 |
|
856 |
demo = gr.ChatInterface(
|
857 |
response_fn,
|
858 |
chatbot=ChatBot(
|
859 |
+
label=MODEL_NAME,
|
860 |
bubble_full_width=False,
|
861 |
latex_delimiters=[
|
862 |
{ "left": "$", "right": "$", "display": False},
|
|
|
865 |
),
|
866 |
textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
|
867 |
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
|
868 |
+
# ! consider preventing the stop button
|
869 |
+
stop_btn=None,
|
870 |
title=f"{model_title}",
|
871 |
description=f"{model_desc}",
|
872 |
# ! decide if can change the system prompt.
|
|
|
874 |
gr.Number(value=0, label='Temperature (higher -> more random)'),
|
875 |
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
|
876 |
gr.Number(value=0.4, label='Frequency penalty (> 0 encourage new tokens)'),
|
877 |
+
# gr.Textbox(value=sys_prompt, label='System prompt', lines=8)
|
878 |
+
],
|
879 |
)
|
880 |
+
with demo:
|
881 |
+
gr.Markdown(warning_markdown)
|
882 |
+
gr.Markdown(cite_markdown)
|
883 |
+
gr.Markdown(path_markdown.format(model_path=model_path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
884 |
|
885 |
demo.queue()
|
886 |
+
demo.launch(server_port=PORT)
|
|
|
887 |
|
888 |
|
889 |
def main():
|
|
|
902 |
export MODEL_PATH=${dataroot}/hf_train/pretrain_lm/swpn/merlion13s108Hi8kPretFlCW8k.LMFromHf.a.gc.t5k0.vizhthid.mean_std.TrainTask.NLNL.Multi.Vi.FSePlCq13M.FSePlCq13M.m4k.b8.lr1e5.linear.wa0k.ms858k.grac1.se1.8g.v4c.zfsdp/step_4000
|
903 |
export MODEL_PATH=${dataroot}/llama-2-7b-lxxp-faster
|
904 |
export MODEL_PATH=${dataroot}/llama-2-7b-chat-xp
|
905 |
+
|
906 |
+
export DEBUG=0
|
907 |
+
export CUDA_VISIBLE_DEVICES=0
|
908 |
+
export MODEL_PATH=seal_13b_a
|
909 |
+
export MODEL_PATH=${dataroot}/hf_train/pretrain_lm/swpn/merlion13s108Hi8kPretFlCW12k.LMFromHf.a.gc.t5k0.vizhthid.mean_std.TrainTask.NLNL.Multi.Vi.SeaV2Cq13M.SeaV2Cq13M.m4k.b8.lr1e5.linear.wa0k.ms858k.grac1.se1.8g.v4c.zfsdp/step_6000
|
910 |
+
|
911 |
+
export MODEL_PATH=${dataroot}/hf_train/pretrain_lm/swpn/mer13s108Hi16kPretFlCWNLP12k_SFT2.LMFromHf.a.gc.t5k0.vizhthid.mean_std.TrainTask.NLNL.Multi.Vi.Sft2Censor.Sft2Censor.m4k.b8.lr1e5.linear.wa0k.ms1144k.grac1.se1.6g.v4c.zfsdp/step_2000
|
912 |
+
export PORT=8799
|
913 |
+
export BLOCK_ZH=1
|
914 |
python app.py
|
915 |
|
916 |
|
917 |
+
DEBUG=1 python app.py
|
918 |
+
|
919 |
+
|
920 |
"""
|
requirements.txt
CHANGED
@@ -22,5 +22,6 @@ tensorboard
|
|
22 |
geomloss
|
23 |
einops
|
24 |
gdown
|
|
|
25 |
vllm==0.1.4
|
26 |
transformers
|
|
|
22 |
geomloss
|
23 |
einops
|
24 |
gdown
|
25 |
+
langdetect
|
26 |
vllm==0.1.4
|
27 |
transformers
|