NGUYEN, Xuan Phi commited on
Commit
7194bc8
·
1 Parent(s): 3a2a429
multipurpose_chatbot/demos/langchain_web_search.py CHANGED
@@ -144,6 +144,7 @@ class AnyEnginePipeline(BaseLLM):
144
  # List to hold all results
145
  text_generations: List[str] = []
146
  stop_strings = stop
 
147
  for i in range(0, len(prompts), self.batch_size):
148
  batch_prompts = prompts[i : i + self.batch_size]
149
  responses = []
@@ -156,7 +157,6 @@ class AnyEnginePipeline(BaseLLM):
156
  text = text[len(prompt):]
157
  if stop is not None and any(x in text for x in stop):
158
  text = text[:text.index(stop[0])]
159
- # print(f">>{text}")
160
  text_generations.append(text)
161
  return LLMResult(
162
  generations=[[Generation(text=text)] for text in text_generations]
@@ -456,8 +456,7 @@ Let's begin! Below is the question from the user.
456
  def create_web_search_engine(model_engine=None):
457
  # from langchain_community.tools.tavily_search import TavilySearchResults
458
  if model_engine is None:
459
- from ..globals import MODEL_ENGINE
460
- model_engine = MODEL_ENGINE
461
 
462
  from langchain_core.utils.function_calling import (
463
  convert_to_openai_function,
@@ -472,8 +471,6 @@ def create_web_search_engine(model_engine=None):
472
 
473
  tools = [NewTavilySearchResults(max_results=1)]
474
  formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
475
- # tools = load_tools(["llm-math"], llm=web_search_llm)
476
- # formatted_tools = render_text_description_and_args(tools)
477
  prompt_template = ChatPromptTemplate.from_messages(
478
  [
479
  # (
@@ -510,249 +507,3 @@ def create_web_search_engine(model_engine=None):
510
 
511
 
512
 
513
-
514
-
515
- # if LANGCHAIN_AVAILABLE:
516
- # class LooseReActJsonSingleInputOutputParser(ReActJsonSingleInputOutputParser):
517
- # def parse(self, text: str) -> AgentAction | AgentFinish:
518
- # try:
519
- # return super().parse(text)
520
- # except OutputParserException as e:
521
- # return AgentFinish({"output": text}, text)
522
-
523
-
524
- # class ChatHuggingfaceFromLocalPipeline(ChatHuggingFace):
525
- # @root_validator()
526
- # def validate_llm(cls, values: dict) -> dict:
527
- # return values
528
- # def _resolve_model_id(self) -> None:
529
- # """Resolve the model_id from the LLM's inference_server_url"""
530
- # self.model_id = self.llm.model_id
531
-
532
-
533
- # class NewHuggingfacePipeline(HuggingFacePipeline):
534
- # bos_token = "<bos>"
535
- # add_bos_token = True
536
-
537
- # @classmethod
538
- # def from_model_id(
539
- # cls,
540
- # model_id: str,
541
- # task: str,
542
- # backend: str = "default",
543
- # device: Optional[int] = -1,
544
- # device_map: Optional[str] = None,
545
- # model_kwargs: Optional[dict] = None,
546
- # pipeline_kwargs: Optional[dict] = None,
547
- # batch_size: int = 2,
548
- # model = None,
549
- # **kwargs: Any,
550
- # ) -> HuggingFacePipeline:
551
- # """Construct the pipeline object from model_id and task."""
552
- # try:
553
- # from transformers import (
554
- # AutoModelForCausalLM,
555
- # AutoModelForSeq2SeqLM,
556
- # AutoTokenizer,
557
- # )
558
- # from transformers import pipeline as hf_pipeline
559
-
560
- # except ImportError:
561
- # raise ValueError(
562
- # "Could not import transformers python package. "
563
- # "Please install it with `pip install transformers`."
564
- # )
565
-
566
- # _model_kwargs = model_kwargs or {}
567
- # tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
568
- # if model is None:
569
- # try:
570
- # if task == "text-generation":
571
- # if backend == "openvino":
572
- # try:
573
- # from optimum.intel.openvino import OVModelForCausalLM
574
-
575
- # except ImportError:
576
- # raise ValueError(
577
- # "Could not import optimum-intel python package. "
578
- # "Please install it with: "
579
- # "pip install 'optimum[openvino,nncf]' "
580
- # )
581
- # try:
582
- # # use local model
583
- # model = OVModelForCausalLM.from_pretrained(
584
- # model_id, **_model_kwargs
585
- # )
586
-
587
- # except Exception:
588
- # # use remote model
589
- # model = OVModelForCausalLM.from_pretrained(
590
- # model_id, export=True, **_model_kwargs
591
- # )
592
- # else:
593
- # model = AutoModelForCausalLM.from_pretrained(
594
- # model_id, **_model_kwargs
595
- # )
596
- # elif task in ("text2text-generation", "summarization", "translation"):
597
- # if backend == "openvino":
598
- # try:
599
- # from optimum.intel.openvino import OVModelForSeq2SeqLM
600
-
601
- # except ImportError:
602
- # raise ValueError(
603
- # "Could not import optimum-intel python package. "
604
- # "Please install it with: "
605
- # "pip install 'optimum[openvino,nncf]' "
606
- # )
607
- # try:
608
- # # use local model
609
- # model = OVModelForSeq2SeqLM.from_pretrained(
610
- # model_id, **_model_kwargs
611
- # )
612
-
613
- # except Exception:
614
- # # use remote model
615
- # model = OVModelForSeq2SeqLM.from_pretrained(
616
- # model_id, export=True, **_model_kwargs
617
- # )
618
- # else:
619
- # model = AutoModelForSeq2SeqLM.from_pretrained(
620
- # model_id, **_model_kwargs
621
- # )
622
- # else:
623
- # raise ValueError(
624
- # f"Got invalid task {task}, "
625
- # f"currently only {VALID_TASKS} are supported"
626
- # )
627
- # except ImportError as e:
628
- # raise ValueError(
629
- # f"Could not load the {task} model due to missing dependencies."
630
- # ) from e
631
- # else:
632
- # print(f'PIpeline skipping creation of model because model is given')
633
-
634
- # if tokenizer.pad_token is None:
635
- # tokenizer.pad_token_id = model.config.eos_token_id
636
-
637
- # if (
638
- # (
639
- # getattr(model, "is_loaded_in_4bit", False)
640
- # or getattr(model, "is_loaded_in_8bit", False)
641
- # )
642
- # and device is not None
643
- # and backend == "default"
644
- # ):
645
- # logger.warning(
646
- # f"Setting the `device` argument to None from {device} to avoid "
647
- # "the error caused by attempting to move the model that was already "
648
- # "loaded on the GPU using the Accelerate module to the same or "
649
- # "another device."
650
- # )
651
- # device = None
652
-
653
- # if (
654
- # device is not None
655
- # and importlib.util.find_spec("torch") is not None
656
- # and backend == "default"
657
- # ):
658
- # import torch
659
-
660
- # cuda_device_count = torch.cuda.device_count()
661
- # if device < -1 or (device >= cuda_device_count):
662
- # raise ValueError(
663
- # f"Got device=={device}, "
664
- # f"device is required to be within [-1, {cuda_device_count})"
665
- # )
666
- # if device_map is not None and device < 0:
667
- # device = None
668
- # if device is not None and device < 0 and cuda_device_count > 0:
669
- # logger.warning(
670
- # "Device has %d GPUs available. "
671
- # "Provide device={deviceId} to `from_model_id` to use available"
672
- # "GPUs for execution. deviceId is -1 (default) for CPU and "
673
- # "can be a positive integer associated with CUDA device id.",
674
- # cuda_device_count,
675
- # )
676
- # if device is not None and device_map is not None and backend == "openvino":
677
- # logger.warning("Please set device for OpenVINO through: " "'model_kwargs'")
678
- # if "trust_remote_code" in _model_kwargs:
679
- # _model_kwargs = {
680
- # k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
681
- # }
682
- # _pipeline_kwargs = pipeline_kwargs or {}
683
- # pipeline = hf_pipeline(
684
- # task=task,
685
- # model=model,
686
- # tokenizer=tokenizer,
687
- # device=device,
688
- # device_map=device_map,
689
- # batch_size=batch_size,
690
- # model_kwargs=_model_kwargs,
691
- # **_pipeline_kwargs,
692
- # )
693
- # if pipeline.task not in VALID_TASKS:
694
- # raise ValueError(
695
- # f"Got invalid task {pipeline.task}, "
696
- # f"currently only {VALID_TASKS} are supported"
697
- # )
698
- # return cls(
699
- # pipeline=pipeline,
700
- # model_id=model_id,
701
- # model_kwargs=_model_kwargs,
702
- # pipeline_kwargs=_pipeline_kwargs,
703
- # batch_size=batch_size,
704
- # **kwargs,
705
- # )
706
-
707
- # def _generate(
708
- # self,
709
- # prompts: List[str],
710
- # stop: Optional[List[str]] = None,
711
- # run_manager: Optional[CallbackManagerForLLMRun] = None,
712
- # **kwargs: Any,
713
- # ) -> LLMResult:
714
- # # List to hold all results
715
- # text_generations: List[str] = []
716
- # pipeline_kwargs = kwargs.get("pipeline_kwargs", self.pipeline_kwargs)
717
- # pipeline_kwargs = pipeline_kwargs if len(pipeline_kwargs) > 0 else self.pipeline_kwargs
718
- # for i in range(0, len(prompts), self.batch_size):
719
- # batch_prompts = prompts[i : i + self.batch_size]
720
- # bos_token = self.pipeline.tokenizer.convert_ids_to_tokens(self.pipeline.tokenizer.bos_token_id)
721
- # for i in range(len(batch_prompts)):
722
- # if not batch_prompts[i].startswith(bos_token) and self.add_bos_token:
723
- # batch_prompts[i] = bos_token + batch_prompts[i]
724
- # # print(f'PROMPT: {stop=} {pipeline_kwargs=} ==================\n{batch_prompts[0]}\n==========================')
725
- # # Process batch of prompts
726
- # responses = self.pipeline(
727
- # batch_prompts,
728
- # **pipeline_kwargs,
729
- # )
730
- # # Process each response in the batch
731
- # for j, (prompt, response) in enumerate(zip(batch_prompts, responses)):
732
- # if isinstance(response, list):
733
- # # if model returns multiple generations, pick the top one
734
- # response = response[0]
735
- # if self.pipeline.task == "text-generation":
736
- # text = response["generated_text"]
737
- # elif self.pipeline.task == "text2text-generation":
738
- # text = response["generated_text"]
739
- # elif self.pipeline.task == "summarization":
740
- # text = response["summary_text"]
741
- # elif self.pipeline.task in "translation":
742
- # text = response["translation_text"]
743
- # else:
744
- # raise ValueError(
745
- # f"Got invalid task {self.pipeline.task}, "
746
- # f"currently only {VALID_TASKS} are supported"
747
- # )
748
- # # Append the processed text to results
749
- # if text.startswith(prompt):
750
- # text = text[len(prompt):]
751
- # if stop is not None and any(x in text for x in stop):
752
- # text = text[:text.index(stop[0])]
753
- # # print(f">>{text}")
754
- # text_generations.append(text)
755
- # return LLMResult(
756
- # generations=[[Generation(text=text)] for text in text_generations]
757
- # )
758
-
 
144
  # List to hold all results
145
  text_generations: List[str] = []
146
  stop_strings = stop
147
+ print(f'Pipeline run: {len(prompts)}')
148
  for i in range(0, len(prompts), self.batch_size):
149
  batch_prompts = prompts[i : i + self.batch_size]
150
  responses = []
 
157
  text = text[len(prompt):]
158
  if stop is not None and any(x in text for x in stop):
159
  text = text[:text.index(stop[0])]
 
160
  text_generations.append(text)
161
  return LLMResult(
162
  generations=[[Generation(text=text)] for text in text_generations]
 
456
  def create_web_search_engine(model_engine=None):
457
  # from langchain_community.tools.tavily_search import TavilySearchResults
458
  if model_engine is None:
459
+ raise ValueError(f'model_engine empty')
 
460
 
461
  from langchain_core.utils.function_calling import (
462
  convert_to_openai_function,
 
471
 
472
  tools = [NewTavilySearchResults(max_results=1)]
473
  formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
 
 
474
  prompt_template = ChatPromptTemplate.from_messages(
475
  [
476
  # (
 
507
 
508
 
509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
multipurpose_chatbot/demos/websearch_chat_interface.py CHANGED
@@ -115,8 +115,8 @@ def chat_web_search_response_stream_multiturn_engine(
115
  if len(message) == 0:
116
  raise gr.Error("The message cannot be empty!")
117
 
 
118
  response_output = agent_executor.invoke({"input": message})
119
- print(response_output)
120
  response = response_output['output']
121
 
122
  full_prompt = gradio_history_to_conversation_prompt(message.strip(), history=history, system_prompt=system_prompt)
@@ -217,6 +217,10 @@ class WebSearchChatInterfaceDemo(BaseDemo):
217
  return demo_chat
218
 
219
 
 
 
 
 
220
  """
221
  run
222
 
 
115
  if len(message) == 0:
116
  raise gr.Error("The message cannot be empty!")
117
 
118
+ print(f'Begin agent_invoke.')
119
  response_output = agent_executor.invoke({"input": message})
 
120
  response = response_output['output']
121
 
122
  full_prompt = gradio_history_to_conversation_prompt(message.strip(), history=history, system_prompt=system_prompt)
 
217
  return demo_chat
218
 
219
 
220
+
221
+
222
+
223
+
224
  """
225
  run
226