Spaces:
Running
on
Zero
Running
on
Zero
NGUYEN, Xuan Phi
commited on
Commit
·
7194bc8
1
Parent(s):
3a2a429
update
Browse files
multipurpose_chatbot/demos/langchain_web_search.py
CHANGED
@@ -144,6 +144,7 @@ class AnyEnginePipeline(BaseLLM):
|
|
144 |
# List to hold all results
|
145 |
text_generations: List[str] = []
|
146 |
stop_strings = stop
|
|
|
147 |
for i in range(0, len(prompts), self.batch_size):
|
148 |
batch_prompts = prompts[i : i + self.batch_size]
|
149 |
responses = []
|
@@ -156,7 +157,6 @@ class AnyEnginePipeline(BaseLLM):
|
|
156 |
text = text[len(prompt):]
|
157 |
if stop is not None and any(x in text for x in stop):
|
158 |
text = text[:text.index(stop[0])]
|
159 |
-
# print(f">>{text}")
|
160 |
text_generations.append(text)
|
161 |
return LLMResult(
|
162 |
generations=[[Generation(text=text)] for text in text_generations]
|
@@ -456,8 +456,7 @@ Let's begin! Below is the question from the user.
|
|
456 |
def create_web_search_engine(model_engine=None):
|
457 |
# from langchain_community.tools.tavily_search import TavilySearchResults
|
458 |
if model_engine is None:
|
459 |
-
|
460 |
-
model_engine = MODEL_ENGINE
|
461 |
|
462 |
from langchain_core.utils.function_calling import (
|
463 |
convert_to_openai_function,
|
@@ -472,8 +471,6 @@ def create_web_search_engine(model_engine=None):
|
|
472 |
|
473 |
tools = [NewTavilySearchResults(max_results=1)]
|
474 |
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
475 |
-
# tools = load_tools(["llm-math"], llm=web_search_llm)
|
476 |
-
# formatted_tools = render_text_description_and_args(tools)
|
477 |
prompt_template = ChatPromptTemplate.from_messages(
|
478 |
[
|
479 |
# (
|
@@ -510,249 +507,3 @@ def create_web_search_engine(model_engine=None):
|
|
510 |
|
511 |
|
512 |
|
513 |
-
|
514 |
-
|
515 |
-
# if LANGCHAIN_AVAILABLE:
|
516 |
-
# class LooseReActJsonSingleInputOutputParser(ReActJsonSingleInputOutputParser):
|
517 |
-
# def parse(self, text: str) -> AgentAction | AgentFinish:
|
518 |
-
# try:
|
519 |
-
# return super().parse(text)
|
520 |
-
# except OutputParserException as e:
|
521 |
-
# return AgentFinish({"output": text}, text)
|
522 |
-
|
523 |
-
|
524 |
-
# class ChatHuggingfaceFromLocalPipeline(ChatHuggingFace):
|
525 |
-
# @root_validator()
|
526 |
-
# def validate_llm(cls, values: dict) -> dict:
|
527 |
-
# return values
|
528 |
-
# def _resolve_model_id(self) -> None:
|
529 |
-
# """Resolve the model_id from the LLM's inference_server_url"""
|
530 |
-
# self.model_id = self.llm.model_id
|
531 |
-
|
532 |
-
|
533 |
-
# class NewHuggingfacePipeline(HuggingFacePipeline):
|
534 |
-
# bos_token = "<bos>"
|
535 |
-
# add_bos_token = True
|
536 |
-
|
537 |
-
# @classmethod
|
538 |
-
# def from_model_id(
|
539 |
-
# cls,
|
540 |
-
# model_id: str,
|
541 |
-
# task: str,
|
542 |
-
# backend: str = "default",
|
543 |
-
# device: Optional[int] = -1,
|
544 |
-
# device_map: Optional[str] = None,
|
545 |
-
# model_kwargs: Optional[dict] = None,
|
546 |
-
# pipeline_kwargs: Optional[dict] = None,
|
547 |
-
# batch_size: int = 2,
|
548 |
-
# model = None,
|
549 |
-
# **kwargs: Any,
|
550 |
-
# ) -> HuggingFacePipeline:
|
551 |
-
# """Construct the pipeline object from model_id and task."""
|
552 |
-
# try:
|
553 |
-
# from transformers import (
|
554 |
-
# AutoModelForCausalLM,
|
555 |
-
# AutoModelForSeq2SeqLM,
|
556 |
-
# AutoTokenizer,
|
557 |
-
# )
|
558 |
-
# from transformers import pipeline as hf_pipeline
|
559 |
-
|
560 |
-
# except ImportError:
|
561 |
-
# raise ValueError(
|
562 |
-
# "Could not import transformers python package. "
|
563 |
-
# "Please install it with `pip install transformers`."
|
564 |
-
# )
|
565 |
-
|
566 |
-
# _model_kwargs = model_kwargs or {}
|
567 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
568 |
-
# if model is None:
|
569 |
-
# try:
|
570 |
-
# if task == "text-generation":
|
571 |
-
# if backend == "openvino":
|
572 |
-
# try:
|
573 |
-
# from optimum.intel.openvino import OVModelForCausalLM
|
574 |
-
|
575 |
-
# except ImportError:
|
576 |
-
# raise ValueError(
|
577 |
-
# "Could not import optimum-intel python package. "
|
578 |
-
# "Please install it with: "
|
579 |
-
# "pip install 'optimum[openvino,nncf]' "
|
580 |
-
# )
|
581 |
-
# try:
|
582 |
-
# # use local model
|
583 |
-
# model = OVModelForCausalLM.from_pretrained(
|
584 |
-
# model_id, **_model_kwargs
|
585 |
-
# )
|
586 |
-
|
587 |
-
# except Exception:
|
588 |
-
# # use remote model
|
589 |
-
# model = OVModelForCausalLM.from_pretrained(
|
590 |
-
# model_id, export=True, **_model_kwargs
|
591 |
-
# )
|
592 |
-
# else:
|
593 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
594 |
-
# model_id, **_model_kwargs
|
595 |
-
# )
|
596 |
-
# elif task in ("text2text-generation", "summarization", "translation"):
|
597 |
-
# if backend == "openvino":
|
598 |
-
# try:
|
599 |
-
# from optimum.intel.openvino import OVModelForSeq2SeqLM
|
600 |
-
|
601 |
-
# except ImportError:
|
602 |
-
# raise ValueError(
|
603 |
-
# "Could not import optimum-intel python package. "
|
604 |
-
# "Please install it with: "
|
605 |
-
# "pip install 'optimum[openvino,nncf]' "
|
606 |
-
# )
|
607 |
-
# try:
|
608 |
-
# # use local model
|
609 |
-
# model = OVModelForSeq2SeqLM.from_pretrained(
|
610 |
-
# model_id, **_model_kwargs
|
611 |
-
# )
|
612 |
-
|
613 |
-
# except Exception:
|
614 |
-
# # use remote model
|
615 |
-
# model = OVModelForSeq2SeqLM.from_pretrained(
|
616 |
-
# model_id, export=True, **_model_kwargs
|
617 |
-
# )
|
618 |
-
# else:
|
619 |
-
# model = AutoModelForSeq2SeqLM.from_pretrained(
|
620 |
-
# model_id, **_model_kwargs
|
621 |
-
# )
|
622 |
-
# else:
|
623 |
-
# raise ValueError(
|
624 |
-
# f"Got invalid task {task}, "
|
625 |
-
# f"currently only {VALID_TASKS} are supported"
|
626 |
-
# )
|
627 |
-
# except ImportError as e:
|
628 |
-
# raise ValueError(
|
629 |
-
# f"Could not load the {task} model due to missing dependencies."
|
630 |
-
# ) from e
|
631 |
-
# else:
|
632 |
-
# print(f'PIpeline skipping creation of model because model is given')
|
633 |
-
|
634 |
-
# if tokenizer.pad_token is None:
|
635 |
-
# tokenizer.pad_token_id = model.config.eos_token_id
|
636 |
-
|
637 |
-
# if (
|
638 |
-
# (
|
639 |
-
# getattr(model, "is_loaded_in_4bit", False)
|
640 |
-
# or getattr(model, "is_loaded_in_8bit", False)
|
641 |
-
# )
|
642 |
-
# and device is not None
|
643 |
-
# and backend == "default"
|
644 |
-
# ):
|
645 |
-
# logger.warning(
|
646 |
-
# f"Setting the `device` argument to None from {device} to avoid "
|
647 |
-
# "the error caused by attempting to move the model that was already "
|
648 |
-
# "loaded on the GPU using the Accelerate module to the same or "
|
649 |
-
# "another device."
|
650 |
-
# )
|
651 |
-
# device = None
|
652 |
-
|
653 |
-
# if (
|
654 |
-
# device is not None
|
655 |
-
# and importlib.util.find_spec("torch") is not None
|
656 |
-
# and backend == "default"
|
657 |
-
# ):
|
658 |
-
# import torch
|
659 |
-
|
660 |
-
# cuda_device_count = torch.cuda.device_count()
|
661 |
-
# if device < -1 or (device >= cuda_device_count):
|
662 |
-
# raise ValueError(
|
663 |
-
# f"Got device=={device}, "
|
664 |
-
# f"device is required to be within [-1, {cuda_device_count})"
|
665 |
-
# )
|
666 |
-
# if device_map is not None and device < 0:
|
667 |
-
# device = None
|
668 |
-
# if device is not None and device < 0 and cuda_device_count > 0:
|
669 |
-
# logger.warning(
|
670 |
-
# "Device has %d GPUs available. "
|
671 |
-
# "Provide device={deviceId} to `from_model_id` to use available"
|
672 |
-
# "GPUs for execution. deviceId is -1 (default) for CPU and "
|
673 |
-
# "can be a positive integer associated with CUDA device id.",
|
674 |
-
# cuda_device_count,
|
675 |
-
# )
|
676 |
-
# if device is not None and device_map is not None and backend == "openvino":
|
677 |
-
# logger.warning("Please set device for OpenVINO through: " "'model_kwargs'")
|
678 |
-
# if "trust_remote_code" in _model_kwargs:
|
679 |
-
# _model_kwargs = {
|
680 |
-
# k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
681 |
-
# }
|
682 |
-
# _pipeline_kwargs = pipeline_kwargs or {}
|
683 |
-
# pipeline = hf_pipeline(
|
684 |
-
# task=task,
|
685 |
-
# model=model,
|
686 |
-
# tokenizer=tokenizer,
|
687 |
-
# device=device,
|
688 |
-
# device_map=device_map,
|
689 |
-
# batch_size=batch_size,
|
690 |
-
# model_kwargs=_model_kwargs,
|
691 |
-
# **_pipeline_kwargs,
|
692 |
-
# )
|
693 |
-
# if pipeline.task not in VALID_TASKS:
|
694 |
-
# raise ValueError(
|
695 |
-
# f"Got invalid task {pipeline.task}, "
|
696 |
-
# f"currently only {VALID_TASKS} are supported"
|
697 |
-
# )
|
698 |
-
# return cls(
|
699 |
-
# pipeline=pipeline,
|
700 |
-
# model_id=model_id,
|
701 |
-
# model_kwargs=_model_kwargs,
|
702 |
-
# pipeline_kwargs=_pipeline_kwargs,
|
703 |
-
# batch_size=batch_size,
|
704 |
-
# **kwargs,
|
705 |
-
# )
|
706 |
-
|
707 |
-
# def _generate(
|
708 |
-
# self,
|
709 |
-
# prompts: List[str],
|
710 |
-
# stop: Optional[List[str]] = None,
|
711 |
-
# run_manager: Optional[CallbackManagerForLLMRun] = None,
|
712 |
-
# **kwargs: Any,
|
713 |
-
# ) -> LLMResult:
|
714 |
-
# # List to hold all results
|
715 |
-
# text_generations: List[str] = []
|
716 |
-
# pipeline_kwargs = kwargs.get("pipeline_kwargs", self.pipeline_kwargs)
|
717 |
-
# pipeline_kwargs = pipeline_kwargs if len(pipeline_kwargs) > 0 else self.pipeline_kwargs
|
718 |
-
# for i in range(0, len(prompts), self.batch_size):
|
719 |
-
# batch_prompts = prompts[i : i + self.batch_size]
|
720 |
-
# bos_token = self.pipeline.tokenizer.convert_ids_to_tokens(self.pipeline.tokenizer.bos_token_id)
|
721 |
-
# for i in range(len(batch_prompts)):
|
722 |
-
# if not batch_prompts[i].startswith(bos_token) and self.add_bos_token:
|
723 |
-
# batch_prompts[i] = bos_token + batch_prompts[i]
|
724 |
-
# # print(f'PROMPT: {stop=} {pipeline_kwargs=} ==================\n{batch_prompts[0]}\n==========================')
|
725 |
-
# # Process batch of prompts
|
726 |
-
# responses = self.pipeline(
|
727 |
-
# batch_prompts,
|
728 |
-
# **pipeline_kwargs,
|
729 |
-
# )
|
730 |
-
# # Process each response in the batch
|
731 |
-
# for j, (prompt, response) in enumerate(zip(batch_prompts, responses)):
|
732 |
-
# if isinstance(response, list):
|
733 |
-
# # if model returns multiple generations, pick the top one
|
734 |
-
# response = response[0]
|
735 |
-
# if self.pipeline.task == "text-generation":
|
736 |
-
# text = response["generated_text"]
|
737 |
-
# elif self.pipeline.task == "text2text-generation":
|
738 |
-
# text = response["generated_text"]
|
739 |
-
# elif self.pipeline.task == "summarization":
|
740 |
-
# text = response["summary_text"]
|
741 |
-
# elif self.pipeline.task in "translation":
|
742 |
-
# text = response["translation_text"]
|
743 |
-
# else:
|
744 |
-
# raise ValueError(
|
745 |
-
# f"Got invalid task {self.pipeline.task}, "
|
746 |
-
# f"currently only {VALID_TASKS} are supported"
|
747 |
-
# )
|
748 |
-
# # Append the processed text to results
|
749 |
-
# if text.startswith(prompt):
|
750 |
-
# text = text[len(prompt):]
|
751 |
-
# if stop is not None and any(x in text for x in stop):
|
752 |
-
# text = text[:text.index(stop[0])]
|
753 |
-
# # print(f">>{text}")
|
754 |
-
# text_generations.append(text)
|
755 |
-
# return LLMResult(
|
756 |
-
# generations=[[Generation(text=text)] for text in text_generations]
|
757 |
-
# )
|
758 |
-
|
|
|
144 |
# List to hold all results
|
145 |
text_generations: List[str] = []
|
146 |
stop_strings = stop
|
147 |
+
print(f'Pipeline run: {len(prompts)}')
|
148 |
for i in range(0, len(prompts), self.batch_size):
|
149 |
batch_prompts = prompts[i : i + self.batch_size]
|
150 |
responses = []
|
|
|
157 |
text = text[len(prompt):]
|
158 |
if stop is not None and any(x in text for x in stop):
|
159 |
text = text[:text.index(stop[0])]
|
|
|
160 |
text_generations.append(text)
|
161 |
return LLMResult(
|
162 |
generations=[[Generation(text=text)] for text in text_generations]
|
|
|
456 |
def create_web_search_engine(model_engine=None):
|
457 |
# from langchain_community.tools.tavily_search import TavilySearchResults
|
458 |
if model_engine is None:
|
459 |
+
raise ValueError(f'model_engine empty')
|
|
|
460 |
|
461 |
from langchain_core.utils.function_calling import (
|
462 |
convert_to_openai_function,
|
|
|
471 |
|
472 |
tools = [NewTavilySearchResults(max_results=1)]
|
473 |
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
|
|
|
474 |
prompt_template = ChatPromptTemplate.from_messages(
|
475 |
[
|
476 |
# (
|
|
|
507 |
|
508 |
|
509 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multipurpose_chatbot/demos/websearch_chat_interface.py
CHANGED
@@ -115,8 +115,8 @@ def chat_web_search_response_stream_multiturn_engine(
|
|
115 |
if len(message) == 0:
|
116 |
raise gr.Error("The message cannot be empty!")
|
117 |
|
|
|
118 |
response_output = agent_executor.invoke({"input": message})
|
119 |
-
print(response_output)
|
120 |
response = response_output['output']
|
121 |
|
122 |
full_prompt = gradio_history_to_conversation_prompt(message.strip(), history=history, system_prompt=system_prompt)
|
@@ -217,6 +217,10 @@ class WebSearchChatInterfaceDemo(BaseDemo):
|
|
217 |
return demo_chat
|
218 |
|
219 |
|
|
|
|
|
|
|
|
|
220 |
"""
|
221 |
run
|
222 |
|
|
|
115 |
if len(message) == 0:
|
116 |
raise gr.Error("The message cannot be empty!")
|
117 |
|
118 |
+
print(f'Begin agent_invoke.')
|
119 |
response_output = agent_executor.invoke({"input": message})
|
|
|
120 |
response = response_output['output']
|
121 |
|
122 |
full_prompt = gradio_history_to_conversation_prompt(message.strip(), history=history, system_prompt=system_prompt)
|
|
|
217 |
return demo_chat
|
218 |
|
219 |
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
"""
|
225 |
run
|
226 |
|