Spaces:
Running
on
Zero
Running
on
Zero
File size: 65,179 Bytes
8889bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 |
# Copyright: DAMO Academy, Alibaba Group
# By Xuan Phi Nguyen at DAMO Academy, Alibaba Group
# Description:
"""
VLLM-based demo script to launch Language chat model for Southeast Asian Languages
"""
import os
import numpy as np
import argparse
import torch
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast
from gradio_client.documentation import document, set_documentation_group
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
# @@ environments ================
DEBUG = bool(int(os.environ.get("DEBUG", "1")))
# List of languages to block
BLOCK_LANGS = str(os.environ.get("BLOCK_LANGS", ""))
BLOCK_LANGS = [x.strip() for x in BLOCK_LANGS.strip().split(";")] if len(BLOCK_LANGS.strip()) > 0 else []
# for lang block, wether to block in history too
LANG_BLOCK_HISTORY = bool(int(os.environ.get("LANG_BLOCK_HISTORY", "0")))
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
DTYPE = os.environ.get("DTYPE", "bfloat16")
# ! (no debug) whether to download HF_MODEL_NAME and save to MODEL_PATH
DOWNLOAD_SNAPSHOT = bool(int(os.environ.get("DOWNLOAD_SNAPSHOT", "0")))
LOG_RESPONSE = bool(int(os.environ.get("LOG_RESPONSE", "0")))
# ! show model path in the demo page, only for internal
DISPLAY_MODEL_PATH = bool(int(os.environ.get("DISPLAY_MODEL_PATH", "1")))
# ! uploaded model path, will be downloaded to MODEL_PATH
HF_MODEL_NAME = os.environ.get("HF_MODEL_NAME", "DAMO-NLP-SG/seal-13b-chat-a")
# ! if model is private, need HF_TOKEN to access the model
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# ! path where the model is downloaded, either on ./ or persistent disc
MODEL_PATH = os.environ.get("MODEL_PATH", "./seal-13b-chat-a")
# ! log path
LOG_PATH = os.environ.get("LOG_PATH", "").strip()
LOG_FILE = None
SAVE_LOGS = LOG_PATH is not None and LOG_PATH != ''
if SAVE_LOGS:
if os.path.exists(LOG_PATH):
print(f'LOG_PATH exist: {LOG_PATH}')
else:
LOG_DIR = os.path.dirname(LOG_PATH)
os.makedirs(LOG_DIR, exist_ok=True)
# ! get LOG_PATH as aggregated outputs in log
GET_LOG_CMD = os.environ.get("GET_LOG_CMD", "").strip()
print(f'SAVE_LOGS: {SAVE_LOGS} | {LOG_PATH}')
# print(f'GET_LOG_CMD: {GET_LOG_CMD}')
# ! !! Whether to delete the folder, ONLY SET THIS IF YOU WANT TO DELETE SAVED MODEL ON PERSISTENT DISC
DELETE_FOLDER = os.environ.get("DELETE_FOLDER", "")
IS_DELETE_FOLDER = DELETE_FOLDER is not None and os.path.exists(DELETE_FOLDER)
print(f'DELETE_FOLDER: {DELETE_FOLDER} | {DOWNLOAD_SNAPSHOT=}')
# ! list of keywords to disabled as security measures to comply with local regulation
KEYWORDS = os.environ.get("KEYWORDS", "").strip()
KEYWORDS = KEYWORDS.split(";") if len(KEYWORDS) > 0 else []
KEYWORDS = [x.lower() for x in KEYWORDS]
# bypass
BYPASS_USERS = os.environ.get("BYPASS_USERS", "").strip()
BYPASS_USERS = BYPASS_USERS.split(";") if len(BYPASS_USERS) > 0 else []
# gradio config
PORT = int(os.environ.get("PORT", "7860"))
# how many iterations to yield response
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
# how many iterations to perform safety check on response
STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0"))
# whether to enable to popup accept user
ENABLE_AGREE_POPUP = bool(int(os.environ.get("ENABLE_AGREE_POPUP", "0")))
# self explanatory
MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048"))
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.1"))
FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.1"))
PRESENCE_PENALTY = float(os.environ.get("PRESENCE_PENALTY", "0.0"))
gpu_memory_utilization = float(os.environ.get("gpu_memory_utilization", "0.9"))
# whether to enable quantization, currently not in use
QUANTIZATION = str(os.environ.get("QUANTIZATION", ""))
# Batch inference file upload
ENABLE_BATCH_INFER = bool(int(os.environ.get("ENABLE_BATCH_INFER", "1")))
BATCH_INFER_MAX_ITEMS = int(os.environ.get("BATCH_INFER_MAX_ITEMS", "100"))
BATCH_INFER_MAX_FILE_SIZE = int(os.environ.get("BATCH_INFER_MAX_FILE_SIZE", "500"))
BATCH_INFER_MAX_PROMPT_TOKENS = int(os.environ.get("BATCH_INFER_MAX_PROMPT_TOKENS", "4000"))
BATCH_INFER_SAVE_TMP_FILE = os.environ.get("BATCH_INFER_SAVE_TMP_FILE", "./tmp/pred.json")
#
DATA_SET_REPO_PATH = str(os.environ.get("DATA_SET_REPO_PATH", ""))
DATA_SET_REPO = None
"""
Internal instructions of how to configure the DEMO
1. Upload SFT model as a model to huggingface: hugginface/models/seal_13b_a
2. If the model weights is private, set HF_TOKEN=<your private hf token> in https://huggingface.co/spaces/????/?????/settings
3. space config env: `HF_MODEL_NAME=SeaLLMs/seal-13b-chat-a` or the underlining model
4. If enable persistent storage: set
HF_HOME=/data/.huggingface
MODEL_PATH=/data/.huggingface/seal-13b-chat-a
if not:
MODEL_PATH=./seal-13b-chat-a
HF_HOME=/data/.huggingface
MODEL_PATH=/data/ckpt/seal-13b-chat-a
DELETE_FOLDER=/data/
"""
# ==============================
print(f'DEBUG mode: {DEBUG}')
print(f'Torch version: {torch.__version__}')
try:
print(f'Torch CUDA version: {torch.version.cuda}')
except Exception as e:
print(f'Failed to print cuda version: {e}')
try:
compute_capability = torch.cuda.get_device_capability()
print(f'Torch CUDA compute_capability: {compute_capability}')
except Exception as e:
print(f'Failed to print compute_capability version: {e}')
# @@ constants ================
DTYPES = {
'float16': torch.float16,
'bfloat16': torch.bfloat16
}
llm = None
demo = None
BOS_TOKEN = '<s>'
EOS_TOKEN = '</s>'
SYSTEM_PROMPT_1 = """You are a helpful, respectful, honest and safe AI assistant built by Alibaba Group."""
# ######### RAG PREPARE
RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE = None, None, None
# RAG_EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
RAG_EMBED_MODEL_NAME = "sentence-transformers/LaBSE"
def load_embeddings():
global RAG_EMBED
if RAG_EMBED is None:
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
print(f'LOading embeddings: {RAG_EMBED_MODEL_NAME}')
RAG_EMBED = HuggingFaceEmbeddings(model_name=RAG_EMBED_MODEL_NAME, model_kwargs={'trust_remote_code':True, "device": "cpu"})
else:
print(f'RAG_EMBED ALREADY EXIST: {RAG_EMBED_MODEL_NAME}: {RAG_EMBED=}')
return RAG_EMBED
def get_rag_embeddings():
return load_embeddings()
_ = get_rag_embeddings()
RAG_CURRENT_VECTORSTORE = None
def load_document_split_vectorstore(file_path):
global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
# assert RAG_EMBED is not None
splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=50)
if file_path.endswith('.pdf'):
loader = PyPDFLoader(file_path)
elif file_path.endswith('.docx'):
loader = Docx2txtLoader(file_path)
elif file_path.endswith('.txt'):
loader = TextLoader(file_path)
splits = loader.load_and_split(splitter)
RAG_CURRENT_VECTORSTORE = FAISS.from_texts(texts=[s.page_content for s in splits], embedding=get_rag_embeddings())
return RAG_CURRENT_VECTORSTORE
def docs_to_rag_context(docs: List[str]):
contexts = "\n".join([d.page_content for d in docs])
context = f"""Answer the following query exclusively based on the information provided in the document above. \
If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query!
###
{contexts}
###
"""
return context
def maybe_get_doc_context(message, file_input, rag_num_docs: Optional[int] = 3):
global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
doc_context = None
if file_input is not None:
assert os.path.exists(file_input), f"not found: {file_input}"
if file_input == RAG_CURRENT_FILE:
# reuse
vectorstore = RAG_CURRENT_VECTORSTORE
print(f'Reuse vectorstore: {file_input}')
else:
vectorstore = load_document_split_vectorstore(file_input)
print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}')
RAG_CURRENT_FILE = file_input
docs = vectorstore.similarity_search(message, k=rag_num_docs)
doc_context = docs_to_rag_context(docs)
return doc_context
# ######### RAG PREPARE
# ============ CONSTANT ============
# https://github.com/gradio-app/gradio/issues/884
MODEL_NAME = "SeaLLM-7B"
MODEL_NAME = str(os.environ.get("MODEL_NAME", "SeaLLM-7B"))
MODEL_TITLE = """
<div class="container" style="
align-items: center;
justify-content: center;
display: flex;
">
<div class="image" >
<img src="file/seal_logo.png" style="
max-width: 10em;
max-height: 5%;
height: 3em;
width: 3em;
float: left;
margin-left: auto;
">
</div>
<div class="text" style="
padding-left: 20px;
padding-top: 1%;
float: left;
">
<h1 style="font-size: xx-large">SeaLLMs - Large Language Models for Southeast Asia</h1>
</div>
</div>
"""
MODEL_TITLE = """
<img src="file/seal_logo.png" style="
max-width: 10em;
max-height: 5%;
height: 3em;
width: 3em;
">
<div class="text" style="
loat: left;
padding-bottom: 2%;
">
SeaLLMs - Large Language Models for Southeast Asia
</div>
"""
"""
Somehow cannot add image here
<div class="image" >
<img src="file/seal_logo.png" style="
max-width: 10em;
max-height: 5%;
height: 3em;
width: 3em;
float: left;
margin-left: auto;
">
</div>
"""
MODEL_DESC = f"""
<div style='display:flex; gap: 0.25rem; '>
<a href='https://github.com/damo-nlp-sg/seallms'><img src='https://img.shields.io/badge/Github-Code-success'></a>
<a href='https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
<a href='https://huggingface.co/SeaLLMs/SeaLLM-7B-v2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
<a href='https://arxiv.org/pdf/2312.00738.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
</div>
<span style="font-size: larger">
<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank">{MODEL_NAME}-v2</a> - a helpful assistant for Southeast Asian Languages 🇬🇧 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇵🇭 🇲🇲.
Explore <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank">our article</a> for more.
</span>
<br>
<span>
<span style="color: red">NOTE: The chatbot may produce false and harmful content and does not have up-to-date knowledge.</span>
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>, which includes
not to use our service to generate any harmful, inappropriate or illegal content.
The service collects user dialogue data for testing and improvement under
<a href="https://creativecommons.org/licenses/by/4.0/">(CC-BY)</a> or similar license. So do not enter any personal information!
</span>
""".strip()
cite_markdown = """
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing},
title = {SeaLLMs - Large Language Models for Southeast Asia},
year = 2023,
}
```
"""
path_markdown = """
#### Model path:
{model_path}
"""
# ! ==================================================================
set_documentation_group("component")
RES_PRINTED = False
@document()
class ChatBot(gr.Chatbot):
def _postprocess_chat_messages(
self, chat_message
):
x = super()._postprocess_chat_messages(chat_message)
# if isinstance(x, str):
# x = x.strip().replace("\n", "<br>")
return x
from gradio.components import Button
from gradio.events import Dependency, EventListenerMethod
# replace events so that submit button is disabled during generation, if stop_btn not found
# this prevent weird behavior
def _setup_stop_events(
self, event_triggers: list[EventListenerMethod], event_to_cancel: Dependency
) -> None:
from gradio.components import State
event_triggers = event_triggers if isinstance(event_triggers, (list, tuple)) else [event_triggers]
if self.stop_btn and self.is_generator:
if self.submit_btn:
for event_trigger in event_triggers:
event_trigger(
lambda: (
Button(visible=False),
Button(visible=True),
),
None,
[self.submit_btn, self.stop_btn],
api_name=False,
queue=False,
)
event_to_cancel.then(
lambda: (Button(visible=True), Button(visible=False)),
None,
[self.submit_btn, self.stop_btn],
api_name=False,
queue=False,
)
else:
for event_trigger in event_triggers:
event_trigger(
lambda: Button(visible=True),
None,
[self.stop_btn],
api_name=False,
queue=False,
)
event_to_cancel.then(
lambda: Button(visible=False),
None,
[self.stop_btn],
api_name=False,
queue=False,
)
self.stop_btn.click(
None,
None,
None,
cancels=event_to_cancel,
api_name=False,
)
else:
if self.submit_btn:
for event_trigger in event_triggers:
event_trigger(
lambda: Button(interactive=False),
None,
[self.submit_btn],
api_name=False,
queue=False,
)
event_to_cancel.then(
lambda: Button(interactive=True),
None,
[self.submit_btn],
api_name=False,
queue=False,
)
# upon clear, cancel the submit event as well
if self.clear_btn:
self.clear_btn.click(
lambda: ([], [], None, Button(interactive=True)),
None,
[self.chatbot, self.chatbot_state, self.saved_input, self.submit_btn],
queue=False,
api_name=False,
cancels=event_to_cancel,
)
# TODO: reconfigure clear button as stop and clear button
def _setup_events(self) -> None:
from gradio.components import State
has_on = False
try:
from gradio.events import Dependency, EventListenerMethod, on
has_on = True
except ImportError as ie:
has_on = False
submit_fn = self._stream_fn if self.is_generator else self._submit_fn
def update_time(c_time, chatbot_state):
# if chatbot_state is empty, register a new conversaion with the current timestamp
# assert len(chatbot_state) > 0, f'empty chatbot state'
if len(chatbot_state) <= 1:
return gr.Number(value=time.time(), label='current_time', visible=False), chatbot_state
# elif len(chatbot_state) == 1:
# # assert chatbot_state[-1][-1] is None, f'invalid [[message, None]] , got {chatbot_state}'
# return gr.Number(value=time.time(), label='current_time', visible=False), chatbot_state
else:
return c_time, chatbot_state
if has_on:
# new version
submit_triggers = (
[self.textbox.submit, self.submit_btn.click]
if self.submit_btn
else [self.textbox.submit]
)
submit_event = (
on(
submit_triggers,
self._clear_and_save_textbox,
[self.textbox],
[self.textbox, self.saved_input],
api_name=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
update_time,
[self.additional_inputs[-1], self.chatbot_state],
[self.additional_inputs[-1], self.chatbot_state],
api_name=False,
queue=False,
)
.then(
submit_fn,
[self.saved_input, self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state],
api_name=False,
)
)
self._setup_stop_events(submit_triggers, submit_event)
else:
raise ValueError(f'Better install new gradio version than 3.44.0')
if self.retry_btn:
retry_event = (
self.retry_btn.click(
self._delete_prev_fn,
[self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
self._display_input,
[self.saved_input, self.chatbot_state],
[self.chatbot, self.chatbot_state],
api_name=False,
queue=False,
)
.then(
submit_fn,
[self.saved_input, self.chatbot_state] + self.additional_inputs,
[self.chatbot, self.chatbot_state],
api_name=False,
)
)
self._setup_stop_events([self.retry_btn.click], retry_event)
if self.undo_btn:
self.undo_btn.click(
self._delete_prev_fn,
[self.chatbot_state],
[self.chatbot, self.saved_input, self.chatbot_state],
api_name=False,
queue=False,
).then(
lambda x: x,
[self.saved_input],
[self.textbox],
api_name=False,
queue=False,
)
# Reconfigure clear_btn to stop and clear text box
def _display_input(
self, message: str, history: List[List[Union[str, None]]]
) -> Tuple[List[List[Union[str, None]]], List[List[list[Union[str, None]]]]]:
if message is not None and message.strip() != "":
history.append([message, None])
return history, history
async def _stream_fn(
self,
message: str,
history_with_input,
request: Request,
*args,
) -> AsyncGenerator:
history = history_with_input[:-1]
inputs, _, _ = special_args(
self.fn, inputs=[message, history, *args], request=request
)
if self.is_async:
generator = self.fn(*inputs)
else:
generator = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
generator = SyncToAsyncIterator(generator, self.limiter)
try:
first_response = await async_iteration(generator)
update = history + [[message, first_response]]
yield update, update
except StopIteration:
update = history + [[message, None]]
yield update, update
except Exception as e:
yield history, history
raise e
try:
async for response in generator:
update = history + [[message, response]]
yield update, update
except Exception as e:
# if "invalid" in str(e):
# yield history, history
# raise e
# else:
# raise e
yield history, history
raise e
# replace
gr.ChatInterface._setup_stop_events = _setup_stop_events
gr.ChatInterface._setup_events = _setup_events
gr.ChatInterface._display_input = _display_input
gr.ChatInterface._stream_fn = _stream_fn
@document()
class CustomTabbedInterface(gr.Blocks):
def __init__(
self,
interface_list: list[gr.Interface],
tab_names: Optional[list[str]] = None,
title: Optional[str] = None,
description: Optional[str] = None,
theme: Optional[gr.Theme] = None,
analytics_enabled: Optional[bool] = None,
css: Optional[str] = None,
):
"""
Parameters:
interface_list: a list of interfaces to be rendered in tabs.
tab_names: a list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc.
title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window.
analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
css: custom css or path to custom css file to apply to entire Blocks
Returns:
a Gradio Tabbed Interface for the given interfaces
"""
super().__init__(
title=title or "Gradio",
theme=theme,
analytics_enabled=analytics_enabled,
mode="tabbed_interface",
css=css,
)
self.description = description
if tab_names is None:
tab_names = [f"Tab {i}" for i in range(len(interface_list))]
with self:
if title:
gr.Markdown(
f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>"
)
if description:
gr.Markdown(description)
with gr.Tabs():
for interface, tab_name in zip(interface_list, tab_names):
with gr.Tab(label=tab_name):
interface.render()
def vllm_abort(self):
sh = self.llm_engine.scheduler
for g in (sh.waiting + sh.running + sh.swapped):
sh.abort_seq_group(g.request_id)
from vllm.sequence import SequenceStatus
scheduler = self.llm_engine.scheduler
for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]:
for seq_group in state_queue:
# if seq_group.request_id == request_id:
# Remove the sequence group from the state queue.
state_queue.remove(seq_group)
for seq in seq_group.seqs:
if seq.is_finished():
continue
scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED)
def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
from vllm.outputs import RequestOutput
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(total=num_requests, desc="Processed prompts")
# Run the engine.
outputs: Dict[str, RequestOutput] = {}
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
outputs[output.request_id] = output
if len(outputs) > 0:
yield outputs
def vllm_generate_stream(
self: Any,
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[Any] = None,
prompt_token_ids: Optional[List[List[int]]] = None,
use_tqdm: bool = False,
) -> Dict[str, Any]:
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
from vllm import LLM, SamplingParams
if prompts is None and prompt_token_ids is None:
raise ValueError("Either prompts or prompt_token_ids must be "
"provided.")
if isinstance(prompts, str):
# Convert a single prompt to a list.
prompts = [prompts]
if prompts is not None and prompt_token_ids is not None:
if len(prompts) != len(prompt_token_ids):
raise ValueError("The lengths of prompts and prompt_token_ids "
"must be the same.")
if sampling_params is None:
# Use default sampling params.
sampling_params = SamplingParams()
# Add requests to the engine.
if prompts is not None:
num_requests = len(prompts)
else:
num_requests = len(prompt_token_ids)
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
if prompt_token_ids is None:
token_ids = None
else:
token_ids = prompt_token_ids[i]
self._add_request(prompt, sampling_params, token_ids)
# return self._run_engine(use_tqdm)
yield from _vllm_run_engine(self, use_tqdm)
# ! avoid saying
# LANG_BLOCK_MESSAGE = """Sorry, the language you have asked is currently not supported. If you have questions in other supported languages, I'll be glad to help. \
# Please also consider clearing the chat box for a better experience."""
# KEYWORD_BLOCK_MESSAGE = "Sorry, I cannot fulfill your request. If you have any unrelated question, I'll be glad to help."
LANG_BLOCK_MESSAGE = """Unsupported language."""
KEYWORD_BLOCK_MESSAGE = "Invalid request."
def _detect_lang(text):
# Disable language that may have safety risk
from langdetect import detect as detect_lang
dlang = None
try:
dlang = detect_lang(text)
except Exception as e:
if "No features in text." in str(e):
return "en"
else:
return "zh"
return dlang
def block_lang(
message: str,
history: List[Tuple[str, str]] = None,
) -> str:
# relieve history base block
if len(BLOCK_LANGS) == 0:
return False
if LANG_BLOCK_HISTORY and history is not None and any((LANG_BLOCK_MESSAGE in x[1].strip()) for x in history):
return True
else:
_lang = _detect_lang(message)
if _lang in BLOCK_LANGS:
print(f'Detect blocked {_lang}: {message}')
return True
else:
return False
def safety_check(text, history=None, ) -> Optional[str]:
"""
Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
This provides an additional security measure to enhance safety and compliance with local regulations.
"""
if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
return KEYWORD_BLOCK_MESSAGE
if len(BLOCK_LANGS) > 0:
if block_lang(text, history):
return LANG_BLOCK_MESSAGE
return None
TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
TURN_PREFIX = "<|im_start|>{role}\n"
def chatml_chat_convo_format(conversations, add_assistant_prefix: bool, default_system=SYSTEM_PROMPT_1):
if conversations[0]['role'] != 'system':
conversations = [{"role": "system", "content": default_system}] + conversations
text = ''
for turn_id, turn in enumerate(conversations):
prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
text += prompt
if add_assistant_prefix:
prompt = TURN_PREFIX.format(role='assistant')
text += prompt
return text
def chatml_format(message, history=None, system_prompt=None):
conversations = []
system_prompt = system_prompt or "You are a helpful assistant."
if history is not None and len(history) > 0:
for i, (prompt, res) in enumerate(history):
conversations.append({"role": "user", "content": prompt.strip()})
conversations.append({"role": "assistant", "content": res.strip()})
conversations.append({"role": "user", "content": message.strip()})
return chatml_chat_convo_format(conversations, True, default_system=system_prompt)
def debug_chat_response_stream_multiturn(message, history):
message_safety = safety_check(message, history=history)
if message_safety is not None:
# yield message_safety
raise gr.Error(message_safety)
message = "This is a debugging message"
for i in range(len(message)):
time.sleep(0.05)
yield message[:i]
def chat_response_stream_multiturn(
message: str,
history: List[Tuple[str, str]],
temperature: float,
max_tokens: int,
frequency_penalty: float,
presence_penalty: float,
system_prompt: Optional[str] = SYSTEM_PROMPT_1,
current_time: Optional[float] = None,
# profile: Optional[gr.OAuthProfile] = None,
) -> str:
"""
gr.Number(value=temperature, label='Temperature (higher -> more random)'),
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'),
gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'),
gr.Textbox(value=sys_prompt, label='System prompt', lines=8, interactive=False),
gr.Number(value=0, label='current_time', visible=False),
"""
global LOG_FILE, LOG_PATH
if DEBUG:
yield from debug_chat_response_stream_multiturn(message, history)
return
from vllm import LLM, SamplingParams
"""Build multi turn
message is incoming prompt
history don't have the current messauge
"""
global llm, RES_PRINTED
assert llm is not None
assert system_prompt.strip() != '', f'system prompt is empty'
# is_by_pass = False if profile is None else profile.username in BYPASS_USERS
is_by_pass = False
tokenizer = llm.get_tokenizer()
# force removing all
vllm_abort(llm)
temperature = float(temperature)
frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
message = message.strip()
if GET_LOG_CMD != "" and message.strip() == GET_LOG_CMD:
print_log_file()
yield "Finish printed log. Please clear the chatbox now."
return
if len(message) == 0:
raise gr.Error("The message cannot be empty!")
message_safety = safety_check(message, history=history)
if message_safety is not None and not is_by_pass:
# yield message_safety
raise gr.Error(message_safety)
# history will be appended with message later on
full_prompt = chatml_format(message.strip(), history=history, system_prompt=system_prompt)
print(full_prompt)
if len(tokenizer.encode(full_prompt)) >= 4050:
raise gr.Error(f"Conversation or prompt is too long, please clear the chatbox or try shorter input.")
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
# stop=['<s>', '</s>', '<<SYS>>', '<</SYS>>', '[INST]', '[/INST]'],
stop=['<s>', '</s>', '<|im_start|>', '<|im_end|>'],
)
cur_out = None
for j, gen in enumerate(vllm_generate_stream(llm, full_prompt, sampling_params)):
if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
# cur_out = cur_out.replace("\\n", "\n")
# optionally check safety, and respond
if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0:
message_safety = safety_check(cur_out, history=None)
if message_safety is not None and not is_by_pass:
# yield message_safety
raise gr.Error(message_safety)
# return
yield cur_out
assert len(gen) == 1, f'{gen}'
item = next(iter(gen.values()))
cur_out = item.outputs[0].text
#cur_out = "Our system is under maintenance, will be back soon!"
if j >= max_tokens - 2:
gr.Warning(f'The response hits limit of {max_tokens} tokens. Consider increase the max tokens parameter in the Additional Inputs.')
# TODO: use current_time to register conversations, accoriding history and cur_out
history_str = format_conversation(history + [[message, cur_out]])
print(f'@@@@@@@@@@\n{history_str}\n##########\n')
maybe_log_conv_file(current_time, history, message, cur_out, temperature=temperature, frequency_penalty=frequency_penalty)
if cur_out is not None and "\\n" in cur_out:
print(f'double slash-n in cur_out:\n{cur_out}')
cur_out = cur_out.replace("\\n", "\n")
if cur_out is not None:
yield cur_out
message_safety = safety_check(cur_out, history=None)
if message_safety is not None and not is_by_pass:
# yield message_safety
raise gr.Error(message_safety)
# return
def chat_response_stream_rag_multiturn(
message: str,
history: List[Tuple[str, str]],
file_input: str,
temperature: float,
max_tokens: int,
# frequency_penalty: float,
# presence_penalty: float,
system_prompt: Optional[str] = SYSTEM_PROMPT_1,
current_time: Optional[float] = None,
rag_num_docs: Optional[int] = 3,
):
message = message.strip()
frequency_penalty = FREQUENCE_PENALTY
presence_penalty = PRESENCE_PENALTY
if len(message) == 0:
raise gr.Error("The message cannot be empty!")
doc_context = maybe_get_doc_context(message, file_input, rag_num_docs=rag_num_docs)
if doc_context is not None:
message = f"{doc_context}\n\n{message}"
yield from chat_response_stream_multiturn(
message, history, temperature, max_tokens, frequency_penalty,
presence_penalty, system_prompt, current_time
)
def debug_generate_free_form_stream(message):
output = " This is a debugging message...."
for i in range(len(output)):
time.sleep(0.05)
yield message + output[:i]
def generate_free_form_stream(
message: str,
temperature: float,
max_tokens: int,
frequency_penalty: float,
presence_penalty: float,
stop_strings: str = '<s>,</s>,<|im_start|>,<|im_end|>',
current_time: Optional[float] = None,
) -> str:
global LOG_FILE, LOG_PATH
if DEBUG:
yield from debug_generate_free_form_stream(message)
return
from vllm import LLM, SamplingParams
"""Build multi turn
"""
global llm, RES_PRINTED
assert llm is not None
tokenizer = llm.get_tokenizer()
# force removing all
vllm_abort(llm)
temperature = float(temperature)
frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
stop_strings = [x.strip() for x in stop_strings.strip().split(",")]
stop_strings = list(set(stop_strings + ['</s>', '<|im_start|>']))
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
stop=stop_strings,
# ignore_eos=True,
)
# full_prompt = message
if len(message) == 0:
raise gr.Error("The message cannot be empty!")
message_safety = safety_check(message)
if message_safety is not None:
raise gr.Error(message_safety)
if len(tokenizer.encode(message)) >= 4050:
raise gr.Error(f"Prompt is too long!")
cur_out = None
for j, gen in enumerate(vllm_generate_stream(llm, message, sampling_params)):
if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
# optionally check safety, and respond
if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0:
message_safety = safety_check(cur_out, history=None)
if message_safety is not None:
raise gr.Error(message_safety)
yield message + cur_out
assert len(gen) == 1, f'{gen}'
item = next(iter(gen.values()))
cur_out = item.outputs[0].text
#cur_out = "Our system is under maintenance, will be back soon!"
if j >= max_tokens - 2:
gr.Warning(f'The response hits limit of {max_tokens} tokens. Consider increase the max tokens parameter in the Additional Inputs.')
if cur_out is not None:
yield message + cur_out
message_safety = safety_check(message + cur_out, history=None)
if message_safety is not None:
raise gr.Error(message_safety)
def maybe_log_conv_file(current_time, history, message, response, **kwargs):
global LOG_FILE
if LOG_FILE is not None:
my_history = history + [[message, response]]
obj = {
'key': str(current_time),
'history': my_history
}
for k, v in kwargs.items():
obj[k] = v
log_ = json.dumps(obj, ensure_ascii=False)
LOG_FILE.write(log_ + "\n")
LOG_FILE.flush()
print(f'Wrote {obj["key"]} to {LOG_PATH}')
def format_conversation(history):
_str = '\n'.join([
(
f'<<<User>>> {h[0]}\n'
f'<<<Asst>>> {h[1]}'
)
for h in history
])
return _str
def aggregate_convos():
from datetime import datetime
global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS
assert os.path.exists(LOG_PATH), f'{LOG_PATH} not found'
convos = None
irregular_count = 1
with open(LOG_PATH, 'r', encoding='utf-8') as f:
convos = {}
for i, l in enumerate(f):
if l:
item = json.loads(l)
key = item['key']
try:
key = float(key)
except Exception as e:
key = -1
if key > 0.0:
item_key = datetime.fromtimestamp(key).strftime("%Y-%m-%d %H:%M:%S")
else:
key = item_key = f'e{irregular_count}'
irregular_count += 1
item['key'] = item_key
convos[key] = item
return convos
def maybe_upload_to_dataset():
from datetime import datetime
global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS
if SAVE_LOGS and os.path.exists(LOG_PATH) and DATA_SET_REPO_PATH != "":
convos = aggregate_convos()
AGG_LOG_PATH = LOG_PATH + ".agg.json"
with open(AGG_LOG_PATH, 'w', encoding='utf-8') as fo:
json.dump(convos, fo, indent=4, ensure_ascii=False)
print(f'Saved aggregated json to {AGG_LOG_PATH}')
try:
from huggingface_hub import upload_file
print(f'upload {AGG_LOG_PATH} to {DATA_SET_REPO_PATH}')
upload_file(
path_or_fileobj=AGG_LOG_PATH,
path_in_repo=os.path.basename(AGG_LOG_PATH),
repo_id=DATA_SET_REPO_PATH,
token=HF_TOKEN,
repo_type="dataset",
create_pr=True
)
except Exception as e:
print(f'Failed to save to repo: {DATA_SET_REPO_PATH}|{str(e)}')
def print_log_file():
global LOG_FILE, LOG_PATH
if SAVE_LOGS and os.path.exists(LOG_PATH):
with open(LOG_PATH, 'r', encoding='utf-8') as f:
convos = aggregate_convos()
print(f'Printing log from {LOG_PATH}')
items = list(convos.items())
for k, v in items[-10:]:
history = v.pop('history')
print(f'######--{v}--#####')
_str = format_conversation(history)
print(_str)
maybe_upload_to_dataset()
def debug_chat_response_echo(
message: str,
history: List[Tuple[str, str]],
temperature: float = 0.0,
max_tokens: int = 4096,
frequency_penalty: float = 0.4,
presence_penalty: float = 0.0,
current_time: Optional[float] = None,
system_prompt: str = SYSTEM_PROMPT_1,
) -> str:
global LOG_FILE
import time
time.sleep(0.5)
if message.strip() == GET_LOG_CMD:
print_log_file()
yield "Finish printed log."
return
for i in range(len(message)):
yield f"repeat: {current_time} {message[:i + 1]}"
cur_out = f"repeat: {current_time} {message}"
maybe_log_conv_file(current_time, history, message, cur_out, temperature=temperature, frequency_penalty=frequency_penalty)
def check_model_path(model_path) -> str:
assert os.path.exists(model_path), f'{model_path} not found'
ckpt_info = "None"
if os.path.isdir(model_path):
if os.path.exists(f'{model_path}/info.txt'):
with open(f'{model_path}/info.txt', 'r') as f:
ckpt_info = f.read()
print(f'Checkpoint info:\n{ckpt_info}\n-----')
else:
print(f'info.txt not found in {model_path}')
print(f'model path dir: {list(os.listdir(model_path))}')
return ckpt_info
def maybe_delete_folder():
if IS_DELETE_FOLDER and DOWNLOAD_SNAPSHOT:
import shutil
print(f'DELETE ALL FILES IN {DELETE_FOLDER}')
for filename in os.listdir(DELETE_FOLDER):
file_path = os.path.join(DELETE_FOLDER, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
AGREE_POP_SCRIPTS = """
async () => {
alert("To use our service, you are required to agree to the following terms:\\nYou must not use our service to generate any harmful, unethical or illegal content that violates local and international laws, including but not limited to hate speech, violence and deception.\\nThe service may collect user dialogue data for performance improvement, and reserves the right to distribute it under CC-BY or similar license. So do not enter any personal information!");
}
"""
def debug_file_function(
files: Union[str, List[str]],
prompt_mode: str,
temperature: float,
max_tokens: int,
frequency_penalty: float,
presence_penalty: float,
stop_strings: str = "[STOP],<s>,</s>",
current_time: Optional[float] = None,
):
"""This is only for debug purpose"""
files = files if isinstance(files, list) else [files]
print(files)
filenames = [f.name for f in files]
all_items = []
for fname in filenames:
print(f'Reading {fname}')
with open(fname, 'r', encoding='utf-8') as f:
items = json.load(f)
assert isinstance(items, list), f'invalid items from {fname} not list'
all_items.extend(items)
print(all_items)
print(f'{prompt_mode} / {temperature} / {max_tokens}, {frequency_penalty}, {presence_penalty}')
save_path = "./test.json"
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(all_items, f, indent=4, ensure_ascii=False)
for x in all_items:
x['response'] = "Return response"
print_items = all_items[:1]
# print_json = json.dumps(print_items, indent=4, ensure_ascii=False)
return save_path, print_items
def validate_file_item(filename, index, item: Dict[str, str]):
"""
check safety for items in files
"""
message = item['prompt'].strip()
if len(message) == 0:
raise gr.Error(f'Prompt {index} empty')
message_safety = safety_check(message, history=None)
if message_safety is not None:
raise gr.Error(f'Prompt {index} invalid: {message_safety}')
tokenizer = llm.get_tokenizer() if llm is not None else None
if tokenizer is None or len(tokenizer.encode(message)) >= BATCH_INFER_MAX_PROMPT_TOKENS:
raise gr.Error(f"Prompt {index} too long, should be less than {BATCH_INFER_MAX_PROMPT_TOKENS} tokens")
def read_validate_json_files(files: Union[str, List[str]]):
files = files if isinstance(files, list) else [files]
filenames = [f.name for f in files]
all_items = []
for fname in filenames:
# check each files
print(f'Reading {fname}')
with open(fname, 'r', encoding='utf-8') as f:
items = json.load(f)
assert isinstance(items, list), f'Data {fname} not list'
assert all(isinstance(x, dict) for x in items), f'item in input file not list'
assert all("prompt" in x for x in items), f'key prompt should be in dict item of input file'
for i, x in enumerate(items):
validate_file_item(fname, i, x)
all_items.extend(items)
if len(all_items) > BATCH_INFER_MAX_ITEMS:
raise gr.Error(f"Num samples {len(all_items)} > {BATCH_INFER_MAX_ITEMS} allowed.")
return all_items, filenames
def remove_gradio_cache(exclude_names=None):
"""remove gradio cache to avoid flooding"""
import shutil
for root, dirs, files in os.walk('/tmp/gradio/'):
for f in files:
# if not any(f in ef for ef in except_files):
if exclude_names is None or not any(ef in f for ef in exclude_names):
print(f'Remove: {f}')
os.unlink(os.path.join(root, f))
# for d in dirs:
# # if not any(d in ef for ef in except_files):
# if exclude_names is None or not any(ef in d for ef in exclude_names):
# print(f'Remove d: {d}')
# shutil.rmtree(os.path.join(root, d))
def maybe_upload_batch_set(pred_json_path):
global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS
if SAVE_LOGS and DATA_SET_REPO_PATH != "":
try:
from huggingface_hub import upload_file
path_in_repo = "misc/" + os.path.basename(pred_json_path).replace(".json", f'.{time.time()}.json')
print(f'upload {pred_json_path} to {DATA_SET_REPO_PATH}//{path_in_repo}')
upload_file(
path_or_fileobj=pred_json_path,
path_in_repo=path_in_repo,
repo_id=DATA_SET_REPO_PATH,
token=HF_TOKEN,
repo_type="dataset",
create_pr=True
)
except Exception as e:
print(f'Failed to save to repo: {DATA_SET_REPO_PATH}|{str(e)}')
def free_form_prompt(prompt, history=None, system_prompt=None):
return prompt
def batch_inference(
files: Union[str, List[str]],
prompt_mode: str,
temperature: float,
max_tokens: int,
frequency_penalty: float,
presence_penalty: float,
stop_strings: str = "[STOP],<s>,</s>,<|im_start|>",
current_time: Optional[float] = None,
system_prompt: Optional[str] = SYSTEM_PROMPT_1
):
"""
Handle file upload batch inference
"""
global LOG_FILE, LOG_PATH, DEBUG, llm, RES_PRINTED
if DEBUG:
return debug_file_function(
files, prompt_mode, temperature, max_tokens,
presence_penalty, stop_strings, current_time)
from vllm import LLM, SamplingParams
assert llm is not None
# assert system_prompt.strip() != '', f'system prompt is empty'
stop_strings = [x.strip() for x in stop_strings.strip().split(",")]
tokenizer = llm.get_tokenizer()
# force removing all
# NOTE: need to make sure all cached items are removed!!!!!!!!!
vllm_abort(llm)
temperature = float(temperature)
frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
all_items, filenames = read_validate_json_files(files)
# remove all items in /tmp/gradio/
remove_gradio_cache(exclude_names=['upload_chat.json', 'upload_few_shot.json'])
if prompt_mode == 'chat':
prompt_format_fn = chatml_format
elif prompt_mode == 'few-shot':
from functools import partial
# prompt_format_fn = partial(
# chatml_format, include_end_instruct=False
# )
prompt_format_fn = free_form_prompt
else:
raise gr.Error(f'Wrong mode {prompt_mode}')
full_prompts = [
prompt_format_fn(
x['prompt'], [], sys_prompt=system_prompt
)
for i, x in enumerate(all_items)
]
print(f'{full_prompts[0]}\n')
if any(len(tokenizer.encode(x)) >= 4090 for x in full_prompts):
raise gr.Error(f"Some prompt is too long!")
stop_seq = list(set(['<s>', '</s>', '<<SYS>>', '<</SYS>>', '[INST]', '[/INST]'] + stop_strings))
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
stop=stop_seq
)
generated = llm.generate(full_prompts, sampling_params, use_tqdm=False)
responses = [g.outputs[0].text for g in generated]
#responses = ["Our system is under maintenance, will be back soon!" for g in generated]
if len(responses) != len(all_items):
raise gr.Error(f'inconsistent lengths {len(responses)} != {len(all_items)}')
for res, item in zip(responses, all_items):
item['response'] = res
save_path = BATCH_INFER_SAVE_TMP_FILE
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(all_items, f, indent=4, ensure_ascii=False)
# You need to upload save_path as a new timestamp file.
maybe_upload_batch_set(save_path)
print_items = all_items[:2]
# print_json = json.dumps(print_items, indent=4, ensure_ascii=False)
return save_path, print_items
# BATCH_INFER_MAX_ITEMS
FILE_UPLOAD_DESCRIPTION = f"""Upload JSON file as list of dict with < {BATCH_INFER_MAX_ITEMS} items, \
each item has `prompt` key. We put guardrails to enhance safety, so do not input any harmful content or personal information! Re-upload the file after every submit. See the examples below.
```
[ {{"id": 0, "prompt": "Hello world"}} , {{"id": 1, "prompt": "Hi there?"}}]
```
"""
CHAT_EXAMPLES = [
["Hãy giải thích thuyết tương đối rộng."],
["Tolong bantu saya menulis email ke lembaga pemerintah untuk mencari dukungan finansial untuk penelitian AI."],
["แนะนำ 10 จุดหมายปลายทางในกรุงเทพฯ"],
]
# performance items
def create_free_form_generation_demo():
global short_model_path
max_tokens = MAX_TOKENS
temperature = TEMPERATURE
frequence_penalty = FREQUENCE_PENALTY
presence_penalty = PRESENCE_PENALTY
introduction = """
### Free-form | Put any context string (like few-shot prompts)
"""
with gr.Blocks() as demo_free_form:
gr.Markdown(introduction)
with gr.Row():
txt = gr.Textbox(
scale=4,
lines=16,
show_label=False,
placeholder="Enter any free form text and submit",
container=False,
)
with gr.Row():
free_submit_button = gr.Button('Submit')
with gr.Row():
temp = gr.Number(value=temperature, label='Temperature', info="Higher -> more random")
length = gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation')
freq_pen = gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens')
pres_pen = gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens')
stop_strings = gr.Textbox(value="<s>,</s>,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1)
free_submit_button.click(
generate_free_form_stream,
[txt, temp, length, freq_pen, pres_pen, stop_strings],
txt
)
return demo_free_form
def create_file_upload_demo():
temperature = TEMPERATURE
frequence_penalty = FREQUENCE_PENALTY
presence_penalty = PRESENCE_PENALTY
max_tokens = MAX_TOKENS
demo_file_upload = gr.Interface(
batch_inference,
inputs=[
gr.File(file_count='single', file_types=['json']),
gr.Radio(["chat", "few-shot"], value='chat', label="Chat or Few-shot mode", info="Chat's output more user-friendly, Few-shot's output more consistent with few-shot patterns."),
gr.Number(value=temperature, label='Temperature', info="Higher -> more random"),
gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation'),
gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens'),
gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens'),
gr.Textbox(value="<s>,</s>,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1),
gr.Number(value=0, label='current_time', visible=False),
],
outputs=[
# "file",
gr.File(label="Generated file"),
# "json"
gr.JSON(label='Example outputs (display 2 samples)')
],
description=FILE_UPLOAD_DESCRIPTION,
allow_flagging=False,
examples=[
["upload_chat.json", "chat", 0.2, 1024, 0.5, 0, "<s>,</s>,<|im_start|>"],
["upload_few_shot.json", "few-shot", 0.2, 128, 0.5, 0, "<s>,</s>,<|im_start|>,\\n"]
],
cache_examples=False,
)
return demo_file_upload
def create_chat_demo(title=None, description=None):
sys_prompt = SYSTEM_PROMPT_1
max_tokens = MAX_TOKENS
temperature = TEMPERATURE
frequence_penalty = FREQUENCE_PENALTY
presence_penalty = PRESENCE_PENALTY
demo_chat = gr.ChatInterface(
chat_response_stream_multiturn,
chatbot=ChatBot(
label=MODEL_NAME,
bubble_full_width=False,
latex_delimiters=[
{ "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
),
textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200),
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
# ! consider preventing the stop button
# stop_btn=None,
title=title,
description=description,
additional_inputs=[
gr.Number(value=temperature, label='Temperature (higher -> more random)'),
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'),
gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'),
gr.Textbox(value=sys_prompt, label='System prompt', lines=4, interactive=False),
gr.Number(value=0, label='current_time', visible=False),
# ! Remove the system prompt textbox to avoid jailbreaking
],
examples=CHAT_EXAMPLES,
cache_examples=False
)
return demo_chat
def upload_file(file):
# file_paths = [file.name for file in files]
# return file_paths
return file.name
RAG_DESCRIPTION = """
* Upload a doc below to answer question about it (RAG).
* Every question must be explicit and self-contained! Because each prompt will invoke a new RAG retrieval without considering previous conversations.
(E.g: Dont prompt "Answer my previous question in details.")
"""
def create_chat_demo_rag(title=None, description=None):
sys_prompt = SYSTEM_PROMPT_1
max_tokens = MAX_TOKENS
temperature = TEMPERATURE
frequence_penalty = FREQUENCE_PENALTY
presence_penalty = PRESENCE_PENALTY
description = description or RAG_DESCRIPTION
# with gr.Blocks(title="RAG") as rag_demo:
additional_inputs = [
gr.File(label='Upload Document', file_count='single', file_types=['pdf', 'docx', 'txt', 'json']),
# gr.Textbox(value=None, label='Document path', lines=1, interactive=False),
gr.Number(value=temperature, label='Temperature (higher -> more random)'),
gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'),
# gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'),
# gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'),
gr.Textbox(value=sys_prompt, label='System prompt', lines=1, interactive=False),
gr.Number(value=0, label='current_time', visible=False),
]
demo_rag_chat = gr.ChatInterface(
chat_response_stream_rag_multiturn,
chatbot=gr.Chatbot(
label=MODEL_NAME + "-RAG",
bubble_full_width=False,
latex_delimiters=[
{ "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
),
textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200),
submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
# ! consider preventing the stop button
# stop_btn=None,
title=title,
description=description,
additional_inputs=additional_inputs,
additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
# examples=CHAT_EXAMPLES,
cache_examples=False
)
# with demo_rag_chat:
# upload_button = gr.UploadButton("Click to Upload document", file_types=['pdf', 'docx', 'txt', 'json'], file_count="single")
# upload_button.upload(upload_file, upload_button, additional_inputs[0])
# return demo_chat
return demo_rag_chat
def launch_demo():
global demo, llm, DEBUG, LOG_FILE
model_desc = MODEL_DESC
model_path = MODEL_PATH
model_title = MODEL_TITLE
hf_model_name = HF_MODEL_NAME
tensor_parallel = TENSOR_PARALLEL
assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
dtype = DTYPE
sys_prompt = SYSTEM_PROMPT_1
max_tokens = MAX_TOKENS
temperature = TEMPERATURE
frequence_penalty = FREQUENCE_PENALTY
presence_penalty = PRESENCE_PENALTY
ckpt_info = "None"
print(
f'Launch config: '
f'\n| model_title=`{model_title}` '
f'\n| max_tokens={max_tokens} '
f'\n| dtype={dtype} '
f'\n| tensor_parallel={tensor_parallel} '
f'\n| IS_DELETE_FOLDER={IS_DELETE_FOLDER} '
f'\n| STREAM_YIELD_MULTIPLE={STREAM_YIELD_MULTIPLE} '
f'\n| STREAM_CHECK_MULTIPLE={STREAM_CHECK_MULTIPLE} '
f'\n| DISPLAY_MODEL_PATH={DISPLAY_MODEL_PATH} '
f'\n| LANG_BLOCK_HISTORY={LANG_BLOCK_HISTORY} '
f'\n| frequence_penalty={frequence_penalty} '
f'\n| presence_penalty={presence_penalty} '
f'\n| temperature={temperature} '
# f'\n| hf_model_name={hf_model_name} '
f'\n| model_path={model_path} '
f'\n| DOWNLOAD_SNAPSHOT={DOWNLOAD_SNAPSHOT} '
f'\n| gpu_memory_utilization={gpu_memory_utilization} '
f'\n| LOG_PATH={LOG_PATH} | SAVE_LOGS={SAVE_LOGS} '
f'\n| Desc={model_desc}'
)
if DEBUG:
model_desc += "\n<br>!!!!! This is in debug mode, responses will copy original"
# response_fn = debug_chat_response_echo
response_fn = chat_response_stream_multiturn
print(f'Creating in DEBUG MODE')
if SAVE_LOGS:
LOG_FILE = open(LOG_PATH, 'a', encoding='utf-8')
else:
# ! load the model
maybe_delete_folder()
if DOWNLOAD_SNAPSHOT:
print(f'Downloading from HF_MODEL_NAME={hf_model_name} -> {model_path}')
if HF_TOKEN is not None:
print(f'Load with HF_TOKEN: {HF_TOKEN}')
snapshot_download(hf_model_name, local_dir=model_path, use_auth_token=True, token=HF_TOKEN)
else:
snapshot_download(hf_model_name, local_dir=model_path)
import vllm
from vllm import LLM
print(F'VLLM: {vllm.__version__}')
ckpt_info = check_model_path(model_path)
print(f'Load path: {model_path} | {ckpt_info}')
if QUANTIZATION == 'awq':
print(F'Load model in int4 quantization')
llm = LLM(model=model_path, dtype="float16", tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, quantization="awq", max_model_len=8192)
else:
llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, max_model_len=8192)
try:
print(llm.llm_engine.workers[0].model)
except Exception as e:
print(f'Cannot print model worker: {e}')
try:
llm.llm_engine.scheduler_config.max_model_len = 8192
llm.llm_engine.scheduler_config.max_num_batched_tokens = 8192
# llm.llm_engine.tokenizer.add_special_tokens = False
except Exception as e:
print(f'Cannot set parameters: {e}')
print(f'Use system prompt:\n{sys_prompt}')
response_fn = chat_response_stream_multiturn
print(F'respond: {response_fn}')
if SAVE_LOGS:
LOG_FILE = open(LOG_PATH, 'a', encoding='utf-8')
if ENABLE_BATCH_INFER:
# demo_file_upload = create_file_upload_demo()
demo_free_form = create_free_form_generation_demo()
demo_chat = create_chat_demo()
demo_chat_rag = create_chat_demo_rag(description=RAG_DESCRIPTION)
descriptions = model_desc
if DISPLAY_MODEL_PATH:
descriptions += f"<br> {path_markdown.format(model_path=model_path)}"
demo = CustomTabbedInterface(
interface_list=[
demo_chat,
demo_chat_rag,
demo_free_form,
# demo_file_upload,
],
tab_names=[
"Chat Interface",
"RAG Chat Interface",
"Text completion",
# "Batch Inference",
],
title=f"{model_title}",
description=descriptions,
)
else:
descriptions = model_desc
if DISPLAY_MODEL_PATH:
descriptions += f"<br> {path_markdown.format(model_path=model_path)}"
demo = create_chat_demo(title=f"{model_title}", description=descriptions)
demo.title = MODEL_NAME
with demo:
if DATA_SET_REPO_PATH != "":
try:
from performance_plot import attach_plot_to_demo
attach_plot_to_demo(demo)
except Exception as e:
print(f'Fail to load DEMO plot: {str(e)}')
gr.Markdown(cite_markdown)
if DISPLAY_MODEL_PATH:
gr.Markdown(path_markdown.format(model_path=model_path))
if ENABLE_AGREE_POPUP:
demo.load(None, None, None, _js=AGREE_POP_SCRIPTS)
# login_btn = gr.LoginButton()
demo.queue(api_open=False)
return demo
if __name__ == "__main__":
demo = launch_demo()
demo.launch(show_api=False, allowed_paths=["seal_logo.png"]) |