SaviAnna commited on
Commit
f7ce05d
·
1 Parent(s): da3ceaa

Update pages/✨second.py

Browse files
Files changed (1) hide show
  1. pages/✨second.py +12 -14
pages/✨second.py CHANGED
@@ -12,37 +12,35 @@ def clean(text):
12
  text = re.sub(r'@\w+',' ',text) # удаляем упоминания пользователей
13
  text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
14
  text = re.sub(r'\d+', ' ', text) # удаляем числа
15
- text = text.translate(str.maketrans('', '', string.punctuation))
16
  return text
17
 
18
  # Загрузка весов модели
19
 
20
- model_filename = 'model_weights.pkl'
21
  with open(model_filename, 'rb') as file:
22
  model = pickle.load(file)
23
 
24
  # Загрузка весов векторизатора
25
  vectorizer = CountVectorizer()
26
- vectorizer_filename = 'vectorizer_weights.pkl'
27
  with open(vectorizer_filename, 'rb') as file:
28
  vectorizer = pickle.load(file)
29
 
30
  # Само приложение
31
 
32
- st.title("CritiSense")
33
- st.subheader("Movie Review Sentiment Analyzer")
34
- st.write("CritiSense is a powerful app that analyzes the sentiment of movie reviews.")
35
- st.write("Whether you want to know if a review is positive or negative, CritiSense has got you covered.")
36
- st.write("Just enter the review, and our app will provide you with instant sentiment analysis.")
37
- st.write("Make informed decisions about movies with CritiSense!")
38
- user_review = st.text_input("Enter your review:", "")
39
  user_review_clean = clean(user_review)
40
  user_features = vectorizer.transform([user_review_clean])
41
  prediction = model.predict(user_features)
42
 
43
- st.write("Review:", user_review)
44
 
45
- if prediction == 1:
46
- st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
47
  else:
48
- st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
 
 
 
12
  text = re.sub(r'@\w+',' ',text) # удаляем упоминания пользователей
13
  text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
14
  text = re.sub(r'\d+', ' ', text) # удаляем числа
 
15
  return text
16
 
17
  # Загрузка весов модели
18
 
19
+ model_filename = 'model_comments_weights.pkl'
20
  with open(model_filename, 'rb') as file:
21
  model = pickle.load(file)
22
 
23
  # Загрузка весов векторизатора
24
  vectorizer = CountVectorizer()
25
+ vectorizer_filename = 'vectorizer_comments_weights.pkl'
26
  with open(vectorizer_filename, 'rb') as file:
27
  vectorizer = pickle.load(file)
28
 
29
  # Само приложение
30
 
31
+ st.title("SafeTalk")
32
+ st.write("Your Personal Comment Filter is an innovative application that harnesses the power of AI to distinguish toxic comments from the rest.")
33
+ st.write("Empowering users to navigate online discussions with confidence, SafeTalk ensures a more constructive and respectful online community by identifying and flagging harmful content.")
34
+ user_review = st.text_input("Enter your comment:", "")
 
 
 
35
  user_review_clean = clean(user_review)
36
  user_features = vectorizer.transform([user_review_clean])
37
  prediction = model.predict(user_features)
38
 
39
+ st.write("Comment:", user_review)
40
 
41
+ if prediction == 0:
42
+ st.markdown("<p style='color: green;'>Non-toxic comment</p>", unsafe_allow_html=True)
43
  else:
44
+ st.markdown("<p style='color: red;'>Toxic comment</p>", unsafe_allow_html=True)
45
+
46
+