TaxDirection / app.py
SantanuBanerjee's picture
Update app.py
7ccb4b2 verified
import csv
import sys
# Increase CSV field size limit
csv.field_size_limit(sys.maxsize)
import gradio as gr
import pandas as pd
def data_pre_processing(file_responses):
consoleMessage_and_Print("Starting data pre-processing...")
# Financial Weights can be anything (ultimately the row-wise weights are aggregated and the corresponding fractions are obtained from that rows' total tax payed)
try: # Define the columns to be processed
# Developing Numeric Columns
# Convert columns to numeric and fill NaN values with 0
file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Latest estimated Tax payment?'] = pd.to_numeric(file_responses['Latest estimated Tax payment?'], errors='coerce').fillna(0)
# Adding a new column 'TotalWeightageAllocated' by summing specific columns by their names
file_responses['TotalWeightageAllocated'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_3_TaxWeightageAllocated']
# Creating Datasets (we assume everything has been provided to us in English, or the translations have been done already)
# Renaming the datasets into similar column headings
initial_dataset_1 = file_responses.rename(columns={
'Personal_TaxDirection_1_Wish': 'Problem_Description',
'Personal_TaxDirection_1_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_1_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_2 = file_responses.rename(columns={
'Personal_TaxDirection_2_Wish': 'Problem_Description',
'Personal_TaxDirection_2_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_2_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_3 = file_responses.rename(columns={
'Personal_TaxDirection_3_Wish': 'Problem_Description',
'Personal_TaxDirection_3_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_3_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
# Calculating the actual TaxAmount to be allocated against each WISH (by overwriting the newly created columns)
initial_dataset_1['Financial_Weight'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_2['Financial_Weight'] = file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_3['Financial_Weight'] = file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
# Removing useless rows # Drop rows where Problem_Description is NaN or an empty string
initial_dataset_1 = initial_dataset_1.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_2 = initial_dataset_2.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_3 = initial_dataset_3.dropna(subset=['Problem_Description'], axis=0)
# Convert 'Problem_Description' column to string type
initial_dataset_1['Problem_Description'] = initial_dataset_1['Problem_Description'].astype(str)
initial_dataset_2['Problem_Description'] = initial_dataset_2['Problem_Description'].astype(str)
initial_dataset_3['Problem_Description'] = initial_dataset_3['Problem_Description'].astype(str)
# Merging the Datasets # Vertically concatenating (merging) the 3 DataFrames
merged_dataset = pd.concat([initial_dataset_1, initial_dataset_2, initial_dataset_3], ignore_index=True)
# Different return can be used to check the processing
consoleMessage_and_Print("Data pre-processing completed.")
return merged_dataset
except Exception as e:
consoleMessage_and_Print(f"Error during data pre-processing: {str(e)}")
return None
import spacy
from transformers import AutoTokenizer, AutoModel
import torch
# Load SpaCy model
# Install the 'en_core_web_sm' model if it isn't already installed
try:
nlp = spacy.load('en_core_web_sm')
except OSError:
# Instead of this try~catch, we could also include this < https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz > in the requirements.txt to directly load it
from spacy.cli import download
download('en_core_web_sm')
nlp = spacy.load('en_core_web_sm')
# Load Hugging Face Transformers model
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
import numpy as np
import sentencepiece as sp
from transformers import pipeline
# Load a summarization model
summarizer = pipeline("summarization")
def Summarized_text(passed_text):
try:
# Summarization
summarize_text = summarizer(passed_text, max_length=70, min_length=30, do_sample=False)[0]['summary_text']
return summarize_text
except Exception as e:
print(f"Summarization failed: {e}")
return passed_text
###### Will uncomment Summarization during final deployment... as it takes a lot of time
def Lemmatize_text(text):
# Text Cleaning
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\d+', '', text)
text = re.sub(r'http\S+', '', text) # Remove https URLs
text = re.sub(r'www\.\S+', '', text) # Remove www URLs
# Tokenize and remove stopwords
tokens = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
custom_stopwords = {'example', 'another'} # Add custom stopwords
tokens = [word for word in tokens if word not in stop_words and word not in custom_stopwords]
# NER - Remove named entities
doc = nlp(' '.join(tokens))
tokens = [token.text for token in doc if not token.ent_type_]
# POS Tagging (optional)
pos_tags = nltk.pos_tag(tokens)
tokens = [word for word, pos in pos_tags if pos in ['NN', 'NNS']] # Filter nouns
# Lemmatize tokens using SpaCy
doc = nlp(' '.join(tokens))
lemmatized_text = ' '.join([token.lemma_ for token in doc])
return lemmatized_text # Return the cleaned and lemmatized text
from random import random
def text_processing_for_domain(text):
# First, get the summarized text
summarized_text = ""
# summarized_text = Summarized_text(text)
# Then, lemmatize the original text
lemmatized_text = ""
lemmatized_text = Lemmatize_text(text)
if lemmatized_text and summarized_text:
# Join both the summarized and lemmatized text
if random() > 0.5:
combined_text = summarized_text + " " + lemmatized_text
else:
combined_text = lemmatized_text + " " + summarized_text
return combined_text
elif summarized_text:
return summarized_text
elif lemmatized_text:
return lemmatized_text
else:
return "Sustainability and Longevity" # Default FailSafe
from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering, KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import silhouette_score
from bertopic import BERTopic
from collections import Counter
def extract_problem_domains(df,
text_column='Processed_ProblemDescription_forDomainExtraction',
cluster_range=(2, 10),
top_words=10):
consoleMessage_and_Print("Extracting Problem Domains...")
# Sentence Transformers approach
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(df[text_column].tolist())
# Perform hierarchical clustering with Silhouette Analysis
silhouette_scores = []
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
silhouette_avg = silhouette_score(embeddings, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Determine the optimal number of clusters
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
# Perform clustering with the optimal number of clusters
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
# Get representative words for each cluster
cluster_representations = {}
for i in range(optimal_n_clusters):
cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
# Map cluster labels to representative words
df["Problem_Cluster"] = cluster_labels
df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
consoleMessage_and_Print("Problem Domain Extraction completed. Returning from Problem Domain Extraction function.")
return df, optimal_n_clusters, cluster_representations
def Extract_Location(text):
doc = nlp(text)
locations = [ent.text for ent in doc.ents if ent.label_ in ['GPE', 'LOC']]
return ' '.join(locations)
def text_processing_for_location(text):
# Extract locations
locations_text = Extract_Location(text)
# Perform further text cleaning if necessary
processed_locations_text = Lemmatize_text(locations_text)
# Remove special characters, digits, and punctuation
processed_locations_text = re.sub(r'[^a-zA-Z\s]', '', processed_locations_text)
# Tokenize and remove stopwords
tokens = word_tokenize(processed_locations_text.lower())
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Join location words into a single string
final_locations_text = ' '.join(tokens)
return final_locations_text if final_locations_text else "India"
def extract_location_clusters(df,
text_column1='Processed_LocationText_forClustering', # Extracted through NLP
text_column2='Geographical_Location', # User Input
cluster_range=(2, 10),
top_words=10):
# Combine the two text columns
text_column = "Combined_Location_Text"
df[text_column] = df[text_column1] + ' ' + df[text_column2]
consoleMessage_and_Print("Extracting Location Clusters...")
# Sentence Transformers approach for embeddings
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(df[text_column].tolist())
# Perform hierarchical clustering with Silhouette Analysis
silhouette_scores = []
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
silhouette_avg = silhouette_score(embeddings, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Determine the optimal number of clusters
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
# Perform clustering with the optimal number of clusters
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
# Get representative words for each cluster
cluster_representations = {}
for i in range(optimal_n_clusters):
cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
# Map cluster labels to representative words
df["Location_Cluster"] = cluster_labels
df['Location_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
df = df.drop(text_column, axis=1)
consoleMessage_and_Print("Location Clustering completed.")
return df, optimal_n_clusters, cluster_representations
def create_cluster_dataframes(processed_df):
# Create a dataframe for Financial Weights
budget_cluster_df = processed_df.pivot_table(
values='Financial_Weight',
index='Location_Cluster',
columns='Problem_Cluster',
aggfunc='sum',
fill_value=0)
# Create a dataframe for Problem Descriptions
problem_cluster_df = processed_df.groupby(['Location_Cluster', 'Problem_Cluster'])['Problem_Description'].apply(list).unstack()
return budget_cluster_df, problem_cluster_df
from random import uniform
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
def generate_project_proposal(prompt): # Generate the proposal
default_proposal = "Hyper-local Sustainability Projects would lead to Longevity of the self and Prosperity of the community. Therefore UNSDGs coupled with Longevity initiatives should be focused upon."
# model_Name = "EleutherAI/gpt-neo-2.7B"
# tempareCHUR = uniform(0.3,0.6)
model_Name = "EleutherAI/gpt-neo-1.3B"
tempareCHUR = uniform(0.5,0.8)
consoleMessage_and_Print(f"Trying to access {model_Name} model. The Prompt is: \n{prompt}")
model = GPTNeoForCausalLM.from_pretrained(model_Name)
tokenizer = GPT2Tokenizer.from_pretrained(model_Name)
model_max_token_limit = 2000 #2048 #1500
try:
# input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Truncate the prompt to fit within the model's input limits
# Adjust as per your model's limit
input_ids = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length = int(2*model_max_token_limit/3) )
print("Input IDs shape:", input_ids.shape)
input_length = input_ids.shape[1] # Slice off the input part if the input length is known
pad_tokenId = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id # Padding with EOS token may always be great
attentionMask = input_ids.ne(pad_tokenId).long()
# Generate the output
output = model.generate(
input_ids,
min_length = int(model_max_token_limit/7), # minimum length of the generated output
max_new_tokens = int(model_max_token_limit/3),
num_return_sequences=1,
no_repeat_ngram_size=2,
temperature=tempareCHUR,
attention_mask=attentionMask, # This was previously not being used
pad_token_id=pad_tokenId
)
print("Output shape:", output.shape)
# Decode the output to text
full_returned_segment = tokenizer.decode(output[0], skip_special_tokens=True)
PP_in_fullReturn = "Project Proposal:" in full_returned_segment
if output is not None and output.shape[1] > 0:
# Decode the output
if output.shape[1] > input_length and PP_in_fullReturn:
generated_part = tokenizer.decode(output[0][input_length:], skip_special_tokens=True)
else:
generated_part = tokenizer.decode(output[0], skip_special_tokens=True)
else:
# Handle the error case, e.g., return an empty string or a default value
raise Exception("Error generating proposal: output is empty or None")
proposal = generated_part.strip()
# if "Project Proposal:" in proposal:
# proposal = proposal.split("Project Proposal:", 1)[1].strip()
print("Generated Proposal: \n", proposal,"\n\n")
return proposal
except Exception as e:
print("Error generating proposal:", str(e))
return default_proposal
import copy
def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
consoleMessage_and_Print("\n Starting function: create_project_proposals")
proposals = {}
for loc in budget_cluster_df.index:
consoleMessage_and_Print(f"\n loc: {loc}")
for prob in budget_cluster_df.columns:
consoleMessage_and_Print(f"\n prob: {prob}")
location = ", ".join([item.strip() for item in location_clusters[loc] if item]) # Clean and join
problem_domain = ", ".join([item.strip() for item in problem_clusters[prob] if item]) # Clean and join
shuffled_descriptions = copy.deepcopy(problem_cluster_df.loc[loc, prob])
# Create a deep copy of the problem descriptions, shuffle it, and join the first 10
print("location: ", location)
print("problem_domain: ", problem_domain)
print("problem_descriptions: ", shuffled_descriptions)
# Check if problem_descriptions is valid (not NaN and not an empty list)
if isinstance(shuffled_descriptions, list) and shuffled_descriptions:
# print(f"\nGenerating proposal for location: {location}, problem domain: {problem_domain}")
consoleMessage_and_Print(f"Generating PP")
random.shuffle(shuffled_descriptions)
# Prepare the prompt
# problems_summary = "; \n".join(shuffled_descriptions[:3]) # Limit to first 3 for brevity
# problems_summary = "; \n".join([f"Problem: {desc}" for desc in shuffled_descriptions[:5]])
problems_summary = "; \n".join([f"Problem {i+1}: {desc}" for i, desc in enumerate(shuffled_descriptions[:7])])
# problems_summary = "; \n".join(shuffled_descriptions) # Join all problem descriptions
# prompt = f"Generate a solution oriented project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
# prompt = f"Generate a solution-oriented project proposal for the following public problem (only output the proposal):\n\n Geographical/Digital Location: {location}\nProblem Category: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
# prompt = f"Generate a singular solution-oriented project proposal bespoke to the following Location~Domain cluster of public problems:\n\n Geographical/Digital Location: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal: \t"
prompt = f"Generate a singular solution-oriented project proposal bespoke to the following Location~Domain cluster of public problems:\n\n Geographical/Digital Location: {location}\nProblem Domain: {problem_domain}\n\n {problems_summary}\n\nSingle Combined Project Proposal: \t"
proposal = generate_project_proposal(prompt)
# Check if proposal is valid
if isinstance(proposal, str) and proposal.strip(): # Valid string that's not empty
proposals[(loc, prob)] = proposal
else:
print(f"Skipping empty problem descriptions for location: {location}, problem domain: {problem_domain}")
return proposals
# def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
# print("\n Starting function: create_project_proposals")
# console_messages.append("\n Starting function: create_project_proposals")
# proposals = {}
# for loc in budget_cluster_df.index:
# print("\n loc: ", loc)
# console_messages.append(f"\n loc: {loc}")
# for prob in budget_cluster_df.columns:
# console_messages.append(f"\n prob: {prob}")
# print("\n prob: ", prob)
# location = ", ".join([item.strip() for item in location_clusters[loc] if item]) # Clean and join
# problem_domain = ", ".join([item.strip() for item in problem_clusters[prob] if item]) # Clean and join
# problem_descriptions = problem_cluster_df.loc[loc, prob]
# print("location: ",location)
# print("problem_domain: ",problem_domain)
# print("problem_descriptions: ",problem_descriptions)
# if problem_descriptions:# and not pd.isna(problem_descriptions):
# print(f"\nGenerating proposal for location: {location}, problem domain: {problem_domain}")
# # console_messages.append(f"\nGenerating proposal for location: {location}, problem domain: {problem_domain}")
# # Prepare the prompt
# problems_summary = "; \n".join(problem_descriptions[:3]) # Limit to first 3 for brevity
# # problems_summary = "; ".join(problem_descriptions)
# # prompt = f"Generate a project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\nBudget: ${financial_weight:.2f}\n\nProject Proposal:"
# prompt = f"Generate a solution oriented project proposal for the following:\n\nLocation: {location}\nProblem Domain: {problem_domain}\nProblems: {problems_summary}\n\nProject Proposal:"
# proposal = generate_project_proposal(prompt)
# proposals[(loc, prob)] = proposal
# print("Generated Proposal: ", proposal)
# else:
# print(f"Skipping empty problem descriptions for location: {location}, problem domain: {problem_domain}")
# return proposals
# def create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters):
# print("\n Starting function: create_project_proposals")
# console_messages.append("\n Starting function: create_project_proposals")
# proposals = {}
# for loc in budget_cluster_df.index:
# for prob in budget_cluster_df.columns:
# location = ", ".join(location_clusters[loc])
# problem_domain = ", ".join(problem_clusters[prob])
# problem_descriptions = problem_cluster_df.loc[loc, prob]
# if problem_descriptions:
# proposal = generate_project_proposal(
# problem_descriptions,
# location,
# problem_domain)
# proposals[(loc, prob)] = proposal
# console_messages.append("\n Exiting function: create_project_proposals")
# return proposals
def nlp_pipeline(original_df):
consoleMessage_and_Print("Starting NLP pipeline...")
# Data Preprocessing
processed_df = data_pre_processing(original_df) # merged_dataset
# Starting the Pipeline for Domain Extraction
consoleMessage_and_Print("Executing Text processing function for Domain identification")
# Apply the text_processing_for_domain function to the DataFrame
processed_df['Processed_ProblemDescription_forDomainExtraction'] = processed_df['Problem_Description'].apply(text_processing_for_domain)
consoleMessage_and_Print("Removing entries which could not be allocated to any Problem Domain")
# processed_df = processed_df.dropna(subset=['Processed_ProblemDescription_forDomainExtraction'], axis=0)
# Drop rows where 'Processed_ProblemDescription_forDomainExtraction' contains empty arrays
processed_df = processed_df[processed_df['Processed_ProblemDescription_forDomainExtraction'].apply(lambda x: len(x) > 0)]
# Domain Clustering
try:
processed_df, optimal_n_clusters, problem_clusters = extract_problem_domains(processed_df)
consoleMessage_and_Print(f"Optimal clusters for Domain extraction: {optimal_n_clusters}")
except Exception as e:
consoleMessage_and_Print(f"Error in extract_problem_domains: {str(e)}")
consoleMessage_and_Print("NLP pipeline for Problem Domain extraction completed.")
consoleMessage_and_Print("Starting NLP pipeline for Location extraction with text processing.")
# Apply the text_processing_for_location function to the DataFrame
processed_df['Processed_LocationText_forClustering'] = processed_df['Problem_Description'].apply(text_processing_for_location)
# processed_df['Processed_LocationText_forClustering'], processed_df['Extracted_Locations'] = zip(*processed_df.apply(text_processing_for_location, axis=1))
# Location Clustering
try:
processed_df, optimal_n_clusters, location_clusters = extract_location_clusters(processed_df)
consoleMessage_and_Print(f"Optimal clusters for Location extraction: {optimal_n_clusters}")
except Exception as e:
consoleMessage_and_Print(f"Error in extract_location_clusters: {str(e)}")
consoleMessage_and_Print("NLP pipeline for location extraction completed.")
# Create cluster dataframes
budget_cluster_df, problem_cluster_df = create_cluster_dataframes(processed_df)
print("Clustering Done...")
# return processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters
print("\n location_clusters: ", location_clusters)
print("\n problem_clusters: ", problem_clusters)
# # Generate project proposals
# location_clusters = dict(enumerate(processed_df['Location_Category_Words'].unique()))
# problem_clusters = dict(enumerate(processed_df['Problem_Category_Words'].unique()))
# print("\n location_clusters_2: ", location_clusters)
# print("\n problem_clusters_2: ", problem_clusters)
project_proposals = create_project_proposals(budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters)
consoleMessage_and_Print("NLP pipeline completed.")
return processed_df, budget_cluster_df, problem_cluster_df, project_proposals, location_clusters, problem_clusters
console_messages = []
def consoleMessage_and_Print(some_text = ""):
console_messages.append(some_text)
print(some_text)
def process_excel(file):
consoleMessage_and_Print("Processing starts. Reading the uploaded Excel file...")
# Ensure the file path is correct
file_path = file.name if hasattr(file, 'name') else file
# Read the Excel file
df = pd.read_excel(file_path)
try:
# Process the DataFrame
consoleMessage_and_Print("Processing the DataFrame...")
processed_df, budget_cluster_df, problem_cluster_df, project_proposals, location_clusters, problem_clusters = nlp_pipeline(df)
# processed_df, budget_cluster_df, problem_cluster_df, location_clusters, problem_clusters = nlp_pipeline(df)
consoleMessage_and_Print("Error was here")
#This code first converts the dictionary to a DataFrame with a single column for the composite key.
#Then, it splits the composite key into separate columns for Location_Cluster and Problem_Cluster.
#Finally, it reorders the columns and writes the DataFrame to an Excel sheet.
try: # Meta AI Solution
# Convert project_proposals dictionary to DataFrame
project_proposals_df = pd.DataFrame(list(project_proposals.items()), columns=['Location_Cluster_Problem_Cluster', 'Solutions Proposed'])
# consoleMessage_and_Print("CheckPoint 1")
# Split the composite key into separate columns
project_proposals_df[['Location_Cluster', 'Problem_Cluster']] = project_proposals_df['Location_Cluster_Problem_Cluster'].apply(pd.Series)
# consoleMessage_and_Print("CheckPoint 2")
# Drop the composite key column
project_proposals_df.drop('Location_Cluster_Problem_Cluster', axis=1, inplace=True)
# consoleMessage_and_Print("CheckPoint 3")
# Reorder the columns
project_proposals_df = project_proposals_df[['Location_Cluster', 'Problem_Cluster', 'Solutions Proposed']]
# consoleMessage_and_Print("CheckPoint 4")
except Exception as e:
consoleMessage_and_Print("Meta AI Solution did not work, trying CHATGPT solution")
try:
# Convert project_proposals dictionary to DataFrame
project_proposals_df = pd.DataFrame.from_dict(
proposals, orient='index', columns=['Solutions Proposed']
)
# If the index is a tuple, it automatically becomes a MultiIndex, so we handle naming correctly:
if isinstance(project_proposals_df.index, pd.MultiIndex):
project_proposals_df.index.names = ['Location_Cluster', 'Problem_Cluster']
else:
# If for some reason it's not a MultiIndex, we name it appropriately
project_proposals_df.index.name = 'Cluster'
# Reset index to have Location_Cluster and Problem_Cluster as columns
project_proposals_df.reset_index(inplace=True)
except Exception as e:
print(e)
# ### Convert project_proposals dictionary to DataFrame
# project_proposals_df = pd.DataFrame.from_dict(project_proposals, orient='index', columns=['Solutions Proposed'])
# project_proposals_df.index.names = ['Location_Cluster', 'Problem_Cluster']
# project_proposals_df.reset_index(inplace=True)
consoleMessage_and_Print("Creating the Excel file.")
output_filename = "OutPut_PPs.xlsx"
with pd.ExcelWriter(output_filename) as writer:
processed_df.to_excel(writer, sheet_name='Input_Processed', index=False)
budget_cluster_df.to_excel(writer, sheet_name='Financial_Weights')
problem_cluster_df.to_excel(writer, sheet_name='Problem_Descriptions')
try:
project_proposals_df.to_excel(writer, sheet_name='Project_Proposals', index=False)
except Exception as e:
consoleMessage_and_Print(f"Error during Project Proposal excelling at the end: {e}")
try:
location_clusters_df = pd.DataFrame({'Cluster_Id': list(location_clusters.keys()),
'Location_Cluster': list(location_clusters.values())})
location_clusters_df.to_excel(writer, sheet_name='Location_Clusters', index=False)
except Exception as e:
consoleMessage_and_Print(f"Error during Location Cluster Dataframing: {e}")
try:
problem_clusters_df = pd.DataFrame({'Cluster_Id': list(problem_clusters.keys()),
'Problem_Cluster': list(problem_clusters.values())})
problem_clusters_df.to_excel(writer, sheet_name='Problem_Clusters', index=False)
except Exception as e:
consoleMessage_and_Print(f"Error during Problem Cluster Dataframing: {e}")
# # Ensure location_clusters and problem_clusters are in DataFrame format
# if isinstance(location_clusters, pd.DataFrame):
# location_clusters.to_excel(writer, sheet_name='Location_Clusters', index=False)
# else:
# consoleMessage_and_Print("Converting Location Clusters to df")
# pd.DataFrame(location_clusters).to_excel(writer, sheet_name='Location_Clusters', index=False)
# if isinstance(problem_clusters, pd.DataFrame):
# problem_clusters.to_excel(writer, sheet_name='Problem_Clusters', index=False)
# else:
# consoleMessage_and_Print("Converting Problem Clusters to df")
# pd.DataFrame(problem_clusters).to_excel(writer, sheet_name='Problem_Clusters', index=False)
consoleMessage_and_Print("Processing completed. Ready for download.")
return output_filename, "\n".join(console_messages) # Return the processed DataFrame as Excel file
except Exception as e:
# return str(e) # Return the error message
# error_message = f"Error processing file: {str(e)}"
# print(error_message) # Log the error
consoleMessage_and_Print(f"Error during processing: {str(e)}")
# return error_message, "Santanu Banerjee" # Return the error message to the user
return None, "\n".join(console_messages)
example_files = []
example_files.append('#TaxDirection (Responses)_BasicExample.xlsx')
# example_files.append('#TaxDirection (Responses)_IntermediateExample.xlsx')
# example_files.append('#TaxDirection (Responses)_UltimateExample.xlsx')
import random
a_random_object = random.choice(["&rArr;", "&rarrtl;", "&Rarr;", "&rarr;"])
# Define the Gradio interface
interface = gr.Interface(
fn=process_excel, # The function to process the uploaded file
inputs=gr.File(type="filepath", label="Upload Excel File here. \t Be sure to check that the column headings in your upload are the same as in the Example files below. \t (Otherwise there will be Error during the processing)"), # File upload input
examples=example_files, # Add the example files
outputs=[
gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"), # File download output
gr.Textbox(label="Console Messages", lines=7, interactive=False) # Console messages output
],
# title="Excel File Uploader",
# title="Upload Excel file containing #TaxDirections &rarr; Download HyperLocal Project Proposals\n",
title = (
"<p style='font-weight: bold; font-size: 25px; text-align: center;'>"
"<span style='color: blue;'>Upload Excel file containing #TaxDirections</span> "
# "<span style='color: brown; font-size: 35px;'>&rarr; </span>"
# "<span style='color: brown; font-size: 35px;'>&rArr; &rarrtl; &Rarr; </span>"
"<span style='color: brown; font-size: 35px;'> " +a_random_object +" </span>"
"<span style='color: green;'>Download HyperLocal Project Proposals</span>"
"</p>\n"
),
description=(
"<p style='font-size: 12px; color: gray; text-align: center'>This tool allows for the systematic evaluation and proposal of solutions tailored to specific location-problem pairs, ensuring efficient resource allocation and project planning. For more information, visit <a href='https://santanban.github.io/TaxDirection/' target='_blank'>#TaxDirection weblink</a>.</p>"
"<p style='font-weight: bold; font-size: 16px; color: blue;'>Upload an Excel file to process and download the result or use the Example files:</p>"
"<p style='font-weight: bold; font-size: 15px; color: blue;'>(click on any of them to directly process the file and Download the result)</p>"
"<p style='font-weight: bold; font-size: 14px; color: green; text-align: right;'>Processed output contains a Project Proposal for each Location~Problem paired combination (i.e. each cell).</p>"
"<p style='font-weight: bold; font-size: 13px; color: green; text-align: right;'>Corresponding Budget Allocation and estimated Project Completion Time are provided in different sheets.</p>"
"<p style='font-size: 12px; color: gray; text-align: center'>Note: The example files provided above are for demonstration purposes. Feel free to upload your own Excel files to see the results. If you have any questions, refer to the documentation-links or contact <a href='https://www.change.org/p/democracy-evolution-ensuring-humanity-s-eternal-existence-through-taxdirection' target='_blank'>support</a>.</p>"
) # Solid description with right-aligned second sentence
)
# Launch the interface
if __name__ == "__main__":
interface.launch()