|
from ultralytics import YOLO |
|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
import torch |
|
|
|
|
|
model = YOLO('yolov5n6.pt') |
|
|
|
|
|
model.conf = 0.25 |
|
model.iou = 0.45 |
|
model.agnostic = False |
|
model.multi_label = False |
|
model.max_det = 100 |
|
|
|
|
|
LOW_RES = (500, 600) |
|
|
|
|
|
|
|
|
|
def detect_and_draw(frame): |
|
|
|
low_res_frame = cv2.resize(frame, LOW_RES) |
|
|
|
|
|
results = model(low_res_frame, verbose=False) |
|
|
|
|
|
scale_x = frame.shape[1] / LOW_RES[0] |
|
scale_y = frame.shape[0] / LOW_RES[1] |
|
|
|
|
|
for detection in results[0].boxes.data: |
|
x1, y1, x2, y2, conf, cls = detection |
|
x1, y1, x2, y2 = int(x1*scale_x), int(y1*scale_y), int(x2*scale_x), int(y2*scale_y) |
|
label = f"{results[0].names[int(cls)]} {conf:.2f}" |
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) |
|
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) |
|
|
|
return frame |
|
|
|
|
|
stream_url = "https://view.h264.cam/ref/kta/live.primary.m3u8" |
|
|
|
|
|
|
|
|
|
def process_stream(): |
|
cap = cv2.VideoCapture(stream_url) |
|
frame_count = 0 |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
frame_count += 3 |
|
if frame_count % 30 == 0: |
|
result = detect_and_draw(frame) |
|
result_rgb = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) |
|
yield result_rgb |
|
|
|
cap.release() |
|
|
|
iface = gr.Interface( |
|
fn=process_stream, |
|
inputs=None, |
|
outputs="image", |
|
live=True, |
|
title="Fast Real-time Object Detection with High-Res Output", |
|
description="Live stream processed with YOLOv5n6 on low-res frames, results drawn on high-res frames." |
|
) |
|
|
|
if __name__ == "__main__": |
|
if torch.cuda.is_available(): |
|
model.to('cuda') |
|
iface.queue() |
|
iface.launch() |
|
|