Kung-Hsiang Huang commited on
Commit
a708f96
·
1 Parent(s): 481130d

update initial lb results

Browse files
app.py CHANGED
@@ -1,193 +1,335 @@
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
  from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  )
90
 
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  demo = gr.Blocks(css=custom_css)
93
  with demo:
94
  gr.HTML(TITLE)
95
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
  with gr.Row():
148
  with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
  interactive=True,
157
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
  )
190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
  with gr.Row():
192
  with gr.Accordion("📙 Citation", open=False):
193
  citation_button = gr.Textbox(
@@ -198,7 +340,7 @@ with demo:
198
  show_copy_button=True,
199
  )
200
 
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
  import gradio as gr
 
2
  import pandas as pd
3
+
4
+ from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, SUBMIT_TEXT, TITLE
 
 
 
 
 
 
 
 
 
5
  from src.display.css_html_js import custom_css
6
+ from src.display.utils import COLS, TYPES, AutoEvalColumn, fields
7
+ from src.envs import CRM_RESULTS_PATH
8
+ from src.populate import get_leaderboard_df_crm
9
+
10
+ original_df = get_leaderboard_df_crm(CRM_RESULTS_PATH, COLS)
11
+
12
+ leaderboard_df = original_df.copy()
13
+ # leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"})
14
+
15
+
16
+ # Searching and filtering
17
+ def update_table(
18
+ hidden_df: pd.DataFrame,
19
+ columns: list,
20
+ framework_query: list
21
+ # llm_query: list,
22
+ # llm_provider_query: list,
23
+ # accuracy_method_query: str,
24
+ # accuracy_threshold_query: str,
25
+ # use_case_area_query: list,
26
+ # use_case_query: list,
27
+ # use_case_type_query: list,
28
+ # metric_area_query: list,
29
+ ):
30
+ filtered_df = filter_framework_func(hidden_df, framework_query)
31
+ # filtered_df = filter_llm_func(hidden_df, llm_query)
32
+
33
+ # filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query)
34
+ # filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query)
35
+ # filtered_df["Accuracy Threshold"] = filter_accuracy_threshold_func(filtered_df, accuracy_threshold_query)
36
+ # filtered_df = filtered_df[filtered_df["Accuracy Threshold"]]
37
+ # filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0])
38
+ # filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query)
39
+ # filtered_df = filter_use_case_func(filtered_df, use_case_query)
40
+ # filtered_df = filter_use_case_type_func(filtered_df, use_case_type_query)
41
+ # Filtering by metric area
42
+ # metric_area_maps = {
43
+ # "Cost": ["Cost Band"],
44
+ # "Accuracy": ["Accuracy", "Instruction Following", "Conciseness", "Completeness", "Factuality"],
45
+ # "Speed (Latency)": ["Response Time (Sec)", "Mean Output Tokens"],
46
+ # "Trust & Safety": ["Trust & Safety", "Safety", "Privacy", "Truthfulness", "CRM Fairness"],
47
+ # }
48
+ # all_metric_cols = []
49
+ # for area in metric_area_maps:
50
+ # all_metric_cols = all_metric_cols + metric_area_maps[area]
51
+
52
+ # columns_to_keep = list(set(columns).difference(set(all_metric_cols)))
53
+ # for area in metric_area_query:
54
+ # columns_to_keep = columns_to_keep + metric_area_maps[area]
55
+ # columns = list(set(columns).intersection(set(columns_to_keep)))
56
+
57
+ df = select_columns(filtered_df, columns)
58
+
59
+
60
+
61
+ return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4")
62
+
63
+
64
+ # def highlight_cols(x):
65
+ # df = x.copy()
66
+ # df.loc[:, :] = "color: black"
67
+ # df.loc[, ["Accuracy"]] = "background-color: #b3d5a4"
68
+ # return df
69
+
70
+
71
+ def highlight_cost_band_low(s, props=""):
72
+
73
+ return props if s == "Low" else None
74
+
75
+
76
+ def init_leaderboard_df(
77
+ leaderboard_df: pd.DataFrame,
78
+ columns: list,
79
+ llm_query: list,
80
+ # llm_provider_query: list,
81
+ # accuracy_method_query: str,
82
+ # accuracy_threshold_query: str,
83
+ # use_case_area_query: list,
84
+ # use_case_query: list,
85
+ # use_case_type_query: list,
86
+ # metric_area_query: list,
87
+ ):
88
+
89
+ # Applying the style function
90
+ # return df.style.apply(highlight_cols, axis=None)
91
+ return update_table(
92
+ leaderboard_df,
93
+ columns,
94
+ llm_query,
95
+ # llm_provider_query,
96
+ # accuracy_method_query,
97
+ # accuracy_threshold_query,
98
+ # use_case_area_query,
99
+ # use_case_query,
100
+ # use_case_type_query,
101
+ # metric_area_query,
102
  )
103
 
104
 
105
+ def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame:
106
+ return df[df["Accuracy Method"] == accuracy_method_query]
107
+
108
+
109
+ def filter_accuracy_threshold_func(df: pd.DataFrame, accuracy_threshold_query: str) -> pd.DataFrame:
110
+ accuracy_cols = ["Instruction Following", "Conciseness", "Completeness", "Accuracy"]
111
+ return (df.loc[:, accuracy_cols] >= float(accuracy_threshold_query)).all(axis=1)
112
+
113
+
114
+ def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame:
115
+ return df[
116
+ df["Use Case Area"].apply(
117
+ lambda x: len(set([_.strip() for _ in x.split("&")]).intersection(use_case_area_query))
118
+ )
119
+ > 0
120
+ ]
121
+
122
+
123
+ def filter_use_case_func(df: pd.DataFrame, use_case_query: list) -> pd.DataFrame:
124
+ return df[df["Use Case Name"].isin(use_case_query)]
125
+
126
+
127
+ def filter_use_case_type_func(df: pd.DataFrame, use_case_type_query: list) -> pd.DataFrame:
128
+ return df[df["Use Case Type"].isin(use_case_type_query)]
129
+
130
+
131
+ def filter_llm_func(df: pd.DataFrame, llm_query: list) -> pd.DataFrame:
132
+ return df[df["Model"].isin(llm_query)]
133
+
134
+ def filter_framework_func(df: pd.DataFrame, framework_query: list) -> pd.DataFrame:
135
+ return df[df["Agentic Framework"].isin(framework_query)]
136
+
137
+ def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.DataFrame:
138
+ return df[df["LLM Provider"].isin(llm_provider_query)]
139
+
140
+
141
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
142
+ # always_here_cols = [
143
+ # AutoEvalColumn.model.name,
144
+ # ]
145
+ # model_provider_col = [AutoEvalColumn.model_provider.name] if AutoEvalColumn.model_provider.name in columns else []
146
+ # We use COLS to maintain sortingx
147
+
148
+ filtered_df = df[
149
+ (
150
+ [AutoEvalColumn.model.name]
151
+ # + model_provider_col
152
+ + [AutoEvalColumn.agentic_framework.name]
153
+ + [c for c in COLS if c in df.columns and c in columns ]
154
+ + [AutoEvalColumn.overall.name]
155
+ )
156
+ ]
157
+
158
+ return filtered_df
159
+
160
+
161
  demo = gr.Blocks(css=custom_css)
162
  with demo:
163
  gr.HTML(TITLE)
164
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
165
 
166
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
167
+ with gr.TabItem("🏅 CRMArena Benchmark", elem_id="llm-benchmark-tab-table", id=0):
168
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  with gr.Row():
170
  with gr.Column():
171
+ filter_agentic_framework = gr.CheckboxGroup(
172
+ choices=list(original_df["Agentic Framework"].unique()),
173
+ value=list(original_df["Agentic Framework"].unique()),
174
+ label="Agentic Framework",
175
+ info="",
 
 
176
  interactive=True,
177
  )
178
+
179
+ with gr.Row():
180
+ shown_columns = gr.CheckboxGroup(
181
+ choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
182
+ value=[
183
+ c.name
184
+ for c in fields(AutoEvalColumn)
185
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
186
+ ],
187
+ label="Select tasks to show",
188
+ elem_id="column-select",
189
+ interactive=True,
190
+ )
191
+
192
+ # with gr.Column():
193
+ # filter_llm = gr.CheckboxGroup(
194
+ # choices=list(original_df["Model"].unique()),
195
+ # value=list(original_df["Model"].unique()),
196
+ # label="Model",
197
+ # info="",
198
+ # interactive=True,
199
+ # )
200
+ # with gr.Column():
201
+ # with gr.Row():
202
+ # filter_llm_provider = gr.CheckboxGroup(
203
+ # choices=list(original_df["LLM Provider"].unique()),
204
+ # value=list(original_df["LLM Provider"].unique()),
205
+ # label="LLM Provider",
206
+ # info="",
207
+ # interactive=True,
208
+ # )
209
+ # with gr.Row():
210
+ # filter_metric_area = gr.CheckboxGroup(
211
+ # choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
212
+ # value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"],
213
+ # label="Metric Area",
214
+ # info="",
215
+ # interactive=True,
216
+ # )
217
+ # with gr.Row():
218
+ # filter_use_case = gr.CheckboxGroup(
219
+ # choices=list(original_df["Use Case Name"].unique()),
220
+ # value=list(original_df["Use Case Name"].unique()),
221
+ # label="Use Case",
222
+ # info="",
223
+ # # multiselect=True,
224
+ # interactive=True,
225
+ # )
226
+ # with gr.Row():
227
+ # with gr.Column():
228
+ # filter_use_case_area = gr.CheckboxGroup(
229
+ # choices=["Service", "Sales"],
230
+ # value=["Service", "Sales"],
231
+ # label="Use Case Area",
232
+ # info="",
233
+ # interactive=True,
234
+ # )
235
+ # with gr.Column():
236
+ # filter_use_case_type = gr.CheckboxGroup(
237
+ # choices=["Summary", "Generation"],
238
+ # value=["Summary", "Generation"],
239
+ # label="Use Case Type",
240
+ # info="",
241
+ # interactive=True,
242
+ # )
243
+ # with gr.Column():
244
+ # filter_use_case = gr.Dropdown(
245
+ # choices=list(original_df["Use Case Name"].unique()),
246
+ # value=list(original_df["Use Case Name"].unique()),
247
+ # label="Use Case",
248
+ # info="",
249
+ # multiselect=True,
250
+ # interactive=True,
251
+ # )
252
+ # with gr.Column():
253
+ # filter_accuracy_method = gr.Radio(
254
+ # choices=["Manual", "Auto"],
255
+ # value="Manual",
256
+ # label="Accuracy Method",
257
+ # info="",
258
+ # interactive=True,
259
+ # )
260
+ # with gr.Column():
261
+ # filter_accuracy_threshold = gr.Number(
262
+ # value="0",
263
+ # label="Accuracy Threshold",
264
+ # info="Range: 0.0 to 4.0",
265
+ # interactive=True,
266
+ # )
267
 
268
+ leaderboard_table = gr.components.Dataframe(
269
+ # value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
270
+ value=init_leaderboard_df(
271
+ leaderboard_df,
272
+ shown_columns.value,
273
+ filter_agentic_framework.value
274
+ # filter_llm.value,
275
+ # filter_llm_provider.value,
276
+ # filter_accuracy_method.value,
277
+ # filter_accuracy_threshold.value,
278
+ # filter_use_case_area.value,
279
+ # filter_use_case.value,
280
+ # filter_use_case_type.value,
281
+ # filter_metric_area.value,
282
+ ),
283
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
284
+ datatype=TYPES,
285
+ elem_id="leaderboard-table",
286
+ interactive=False,
287
+ visible=True,
 
 
 
 
 
 
 
 
 
 
288
  )
289
 
290
+ # Dummy leaderboard for handling the case when the user uses backspace key
291
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
292
+ value=original_df[COLS],
293
+ headers=COLS,
294
+ datatype=TYPES,
295
+ visible=False,
296
+ )
297
+ for selector in [
298
+ shown_columns,
299
+ filter_agentic_framework
300
+ # filter_llm,
301
+ # filter_llm_provider,
302
+ # filter_accuracy_method,
303
+ # filter_accuracy_threshold,
304
+ # filter_use_case_area,
305
+ # filter_use_case,
306
+ # filter_use_case_type,
307
+ # filter_metric_area,
308
+ ]:
309
+ selector.change(
310
+ update_table,
311
+ [
312
+ hidden_leaderboard_table_for_search,
313
+ shown_columns,
314
+ filter_agentic_framework,
315
+ # filter_llm,
316
+ # filter_llm_provider,
317
+ # filter_accuracy_method,
318
+ # filter_accuracy_threshold,
319
+ # filter_use_case_area,
320
+ # filter_use_case,
321
+ # filter_use_case_type,
322
+ # filter_metric_area,
323
+ ],
324
+ leaderboard_table,
325
+ queue=True,
326
+ )
327
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
328
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
329
+
330
+ with gr.TabItem("🚀 Submit", elem_id="llm-benchmark-tab-table", id=4):
331
+ gr.Markdown(SUBMIT_TEXT, elem_classes="markdown-text")
332
+
333
  with gr.Row():
334
  with gr.Accordion("📙 Citation", open=False):
335
  citation_button = gr.Textbox(
 
340
  show_copy_button=True,
341
  )
342
 
343
+ # scheduler = BackgroundScheduler()
344
+ # scheduler.add_job(restart_space, "interval", seconds=1800)
345
+ # scheduler.start()
346
+ demo.queue(default_concurrency_limit=40).launch()
crmarena_results/all_results.csv ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Model,Agentic Framework,NCR,HTU,TCU,NED,PVI,KQA,TII,MTA,BRI,Overall ⬆️
2
+ 0,gpt-4o,Act,43.1,10.0,17.7,30.8,28.5,29.3,68.5,29.2,7.7,29.4
3
+ 1,gpt-4o-mini,Act,0.8,38.5,23.8,9.2,0.0,43.1,26.9,3.8,3.8,16.7
4
+ 2,claude-3.5-sonnet,Act,78.5,24.6,15.4,51.5,28.5,44.7,45.4,20.8,26.9,37.4
5
+ 3,claude-3-sonnet,Act,9.2,26.9,24.6,30.8,23.8,16.6,16.2,1.5,0.0,16.6
6
+ 4,llama3.1-405b,Act,46.2,17.7,17.7,13.9,30.0,47.0,15.4,5.4,6.9,22.2
7
+ 5,llama3.1-70b,Act,28.5,20.0,24.6,6.2,30.0,47.9,8.5,0.0,1.5,18.6
8
+ 6,gpt-4o,ReAct,70.0,39.2,22.3,30.8,35.4,50.2,64.6,20.9,10.8,38.2
9
+ 7,gpt-4o-mini,ReAct,40.8,36.9,25.4,31.5,24.6,52.8,30.0,6.2,6.2,28.3
10
+ 8,claude-3.5-sonnet,ReAct,62.9,20.0,11.5,52.3,30.0,45.0,43.9,20.8,21.5,34.3
11
+ 9,claude-3-sonnet,ReAct,7.7,24.6,26.9,29.2,28.5,16.0,22.3,0.8,0.0,17.3
12
+ 10,llama3.1-405b,ReAct,81.5,22.3,15.4,33.9,34.6,55.3,34.6,13.9,13.1,33.8
13
+ 11,llama3.1-70b,ReAct,48.5,20.0,13.9,33.1,37.7,48.7,23.9,13.9,10.8,27.8
14
+ 12,gpt-4o,Function Calling,60.0,47.7,81.5,46.2,39.2,30.4,97.7,27.7,59.2,54.4
15
+ 13,gpt-4o-mini,Function Calling,0.8,10.8,10.8,17.7,13.8,39.7,60.0,0.0,21.5,19.5
16
+ 14,claude-3.5-sonnet,Function Calling,4.6,33.1,82.3,52.3,30.0,40.5,69.2,26.9,36.9,41.8
17
+ 15,claude-3-sonnet,Function Calling,0.8,1.5,30.0,25.4,41.5,23.2,12.3,1.5,0.0,15.1
18
+ 16,llama3.1-405b,Function Calling,16.2,31.5,64.6,50.0,26.9,47.6,95.4,86.9,42.3,51.3
19
+ 17,llama3.1-70b,Function Calling,1.5,23.1,44.6,53.8,37.4,42.4,93.8,43.8,29.2,41.1
src/about.py CHANGED
@@ -1,72 +1,40 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
  # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
 
 
25
 
26
  # What does your leaderboard evaluate?
27
  INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
 
38
  """
39
 
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
 
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
  """
69
 
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
  CITATION_BUTTON_TEXT = r"""
 
 
 
 
 
72
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Your leaderboard name
2
+ TITLE = """<h1 align="center" id="space-title">CRMArena Leaderboard</h1>
3
+ CRMArena is a novel benchmark designed to assess LLM agents on realistic customer service tasks within professional environments. By working with CRM experts, CRMArena offers nine challenging tasks across three personas—service agent, analyst, and manager—populated within a simulated organization using 16 interrelated industrial objects. This benchmark invites the community to improve AI agent capabilities in function-calling and work task understanding, demonstrating tangible business value in a realistic Salesforce Org.
4
+ """
5
 
6
  # What does your leaderboard evaluate?
7
  INTRODUCTION_TEXT = """
 
 
 
 
 
 
 
 
 
8
 
9
  """
10
 
11
+ LLM_BENCHMARKS_TEXT = """
12
+ ### Overview
13
+ Customer Relationship Management (CRM) systems are vital for modern enterprises, providing a foundation for managing customer interactions and data. Integrating AI agents into CRM systems can automate routine processes and enhance personalized service. However, deploying and evaluating these agents is challenging due to the lack of realistic benchmarks that reflect the complexity of real-world CRM tasks. To address this issue, we introduce CRMArena, a novel benchmark designed to evaluate AI agents on realistic tasks grounded in professional work environments. We worked with CRM experts to design nine customer service tasks distributed across three personas: service agent, analyst, and manager. We synthesize a large-scale simulated organization, populating 16 commonly-used industrial objects (e.g., account, order, knowledge article, case) with high interconnectivity, and upload it into a real Salesforce CRM organization. UI and API access to the CRM is provided to systems that attempt to complete the tasks in CRMArena. Experimental results reveal that state-of-the-art LLM agents succeed in less than 40% of the tasks with ReAct prompting and less than 55% even when provided manually-crafted function-calling tools. Our findings highlight the need for enhanced agent capabilities in function-calling and rule-following to be deployed in real-world work environments. CRMArena is an open challenge to the community: systems that can reliably complete tasks showcase direct business value in a popular work environment.
14
+ ### Task Definitions
15
+
16
+ | Task | Description |
17
+ |------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
18
+ | **New Case Routing (NCR)** | Assign the best human agent to an incoming case based on case subject and description to optimize performance metrics. Involves matching cases to agents using case histories, skills, and availability. |
19
+ | **Handle Time Understanding (HTU)**| Identify the agent with the shortest/longest average handle time based on case history data, evaluating the LLM agent's ability to analyze performance data accurately. |
20
+ | **Transfer Count Understanding (TCU)** | Determine which human agent transferred cases the least/most over a given period, assessing the LLM agent's capacity to analyze transfer performance accurately. |
21
+ | **Name Entity Disambiguation (NED)** | Disambiguate named entities related to customer transactions, focusing on product names. Identify specific orders corresponding to product names within a given timeframe. |
22
+ | **Policy Violation Identification (PVI)** | Determine if company policies have been breached in a case involving customer-agent interaction by comparing case details against policy rules in knowledge articles. |
23
+ | **Knowledge Question Answering (KQA)** | Answer specific questions based on knowledge articles, demonstrating the LLM agent's ability to retrieve accurate and relevant information from a CRM knowledge repository. |
24
+ | **Top Issue Identification (TII)** | Identify the most reported issue for a particular product based on case history, assessing the ability to analyze issue reports for trend analysis. |
25
+ | **Monthly Trend Analysis (MTA)** | Determine which months have the highest number of cases for a given product and timeframe, demonstrating the LLM agent's ability to recognize trends and patterns over time. |
26
+ | **Best Region Identification (BRI)** | Identify the regions where cases are closed the fastest by analyzing case closure times across various regions to indicate top-performing regions. |
27
+ """
 
 
 
 
 
 
28
 
29
+ SUBMIT_TEXT= """
30
+ To submit your results to CRMArena leaderboard, please send your outputs to us at kh.[email protected].
 
 
31
  """
32
 
33
+ CITATION_BUTTON_LABEL = "If you find our work helpful, please consider citing our paper!"
34
  CITATION_BUTTON_TEXT = r"""
35
+ @misc{huang-2024-crmarena,
36
+ title={CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments},
37
+ author={Huang, Kung-Hsiang and Prabhakar, Akshara and Dhawan, Sidharth and Mao, Yixin and Wang, Huan and Savarese, Silvio and Xiong, Caiming and Laban, Philippe and Wu, Chien-Sheng},
38
+ year = {2024},
39
+ }
40
  """
src/display/css_html_js.py CHANGED
@@ -33,7 +33,7 @@ custom_css = """
33
  background: none;
34
  border: none;
35
  }
36
-
37
  #search-bar {
38
  padding: 0px;
39
  }
@@ -77,7 +77,7 @@ table th:first-child {
77
  #filter_type label > .wrap{
78
  width: 103px;
79
  }
80
- #filter_type label > .wrap .wrap-inner{
81
  padding: 2px;
82
  }
83
  #filter_type label > .wrap .wrap-inner input{
 
33
  background: none;
34
  border: none;
35
  }
36
+
37
  #search-bar {
38
  padding: 0px;
39
  }
 
77
  #filter_type label > .wrap{
78
  width: 103px;
79
  }
80
+ #filter_type label > .wrap .wrap-inner{
81
  padding: 2px;
82
  }
83
  #filter_type label > .wrap .wrap-inner input{
src/display/utils.py CHANGED
@@ -1,9 +1,7 @@
1
  from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
 
4
  import pandas as pd
5
 
6
- from src.about import Tasks
7
 
8
  def fields(raw_class):
9
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@@ -20,91 +18,94 @@ class ColumnContent:
20
  hidden: bool = False
21
  never_hidden: bool = False
22
 
 
23
  ## Leaderboard columns
 
 
24
  auto_eval_column_dict = []
 
 
25
  # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
 
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
 
 
108
 
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
 
 
 
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from dataclasses import dataclass, make_dataclass
 
2
 
3
  import pandas as pd
4
 
 
5
 
6
  def fields(raw_class):
7
  return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
 
18
  hidden: bool = False
19
  never_hidden: bool = False
20
 
21
+
22
  ## Leaderboard columns
23
+
24
+
25
  auto_eval_column_dict = []
26
+
27
+ # 'Model', 'NCR', 'HTU', 'TCU', 'NED', 'PVI', 'KQA', 'TII', 'MTA', 'BRI', 'Overall', 'Agentic Framework']
28
  # Init
29
+ auto_eval_column_dict.append(
30
+ ["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]
31
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ # Agentic Framework
34
+ auto_eval_column_dict.append(
35
+ ["agentic_framework", ColumnContent, ColumnContent("Agentic Framework", "markdown", True, never_hidden=True)]
36
+ )
37
+
38
+ # NCR
39
+ auto_eval_column_dict.append(
40
+ ["ncr", ColumnContent, ColumnContent("NCR", "markdown", True)]
41
+ )
42
+
43
+ # HTU
44
+ auto_eval_column_dict.append(
45
+ ["htu", ColumnContent, ColumnContent("HTU", "markdown", True)]
46
+ )
47
+
48
+ # TCU
49
+ auto_eval_column_dict.append(
50
+ ["tcu", ColumnContent, ColumnContent("TCU", "markdown", True)]
51
+ )
52
 
53
+ # NED
54
+ auto_eval_column_dict.append(
55
+ ["ned", ColumnContent, ColumnContent("NED", "markdown", True)]
56
+ )
57
 
58
+ # PVI
59
+ auto_eval_column_dict.append(
60
+ ["pvi", ColumnContent, ColumnContent("PVI", "markdown", True)]
61
+ )
62
 
63
+ # KQA
64
+ auto_eval_column_dict.append(
65
+ ["kqa", ColumnContent, ColumnContent("KQA", "markdown", True)]
66
+ )
67
+
68
+ # TII
69
+ auto_eval_column_dict.append(
70
+ ["tii", ColumnContent, ColumnContent("TII", "markdown", True)]
71
+ )
72
+
73
+ # MTA
74
+ auto_eval_column_dict.append(
75
+ ["mta", ColumnContent, ColumnContent("MTA", "markdown", True)]
76
+ )
77
+
78
+ # BRI
79
+ auto_eval_column_dict.append(
80
+ ["bri", ColumnContent, ColumnContent("BRI", "markdown", True)]
81
+ )
82
+
83
+ # Overall
84
+ auto_eval_column_dict.append(
85
+ ["overall", ColumnContent, ColumnContent("Overall ⬆️", "markdown", True, never_hidden=True)]
86
+ )
87
+
88
+
89
+
90
+ # Create AutoEvalColumn class
91
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict)
92
+
93
+
94
+ # Column selection
95
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
96
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
97
+ COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
98
+ TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
99
+
100
+ # BENCHMARK_COLS = [t.value.col_name for t in Tasks]
101
+
102
+ NUMERIC_INTERVALS = {
103
+ "?": pd.Interval(-1, 0, closed="right"),
104
+ "~1.5": pd.Interval(0, 2, closed="right"),
105
+ "~3": pd.Interval(2, 4, closed="right"),
106
+ "~7": pd.Interval(4, 9, closed="right"),
107
+ "~13": pd.Interval(9, 20, closed="right"),
108
+ "~35": pd.Interval(20, 45, closed="right"),
109
+ "~60": pd.Interval(45, 70, closed="right"),
110
+ "70+": pd.Interval(70, 10000, closed="right"),
111
+ }
src/envs.py CHANGED
@@ -4,9 +4,9 @@ from huggingface_hub import HfApi
4
 
5
  # Info to change for your repository
6
  # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
 
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
  # ----------------------------------
11
 
12
  REPO_ID = f"{OWNER}/leaderboard"
@@ -14,11 +14,14 @@ QUEUE_REPO = f"{OWNER}/requests"
14
  RESULTS_REPO = f"{OWNER}/results"
15
 
16
  # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
 
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
 
 
 
22
  EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
  EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
 
 
4
 
5
  # Info to change for your repository
6
  # ----------------------------------
7
+ TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
 
9
+ OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
  # ----------------------------------
11
 
12
  REPO_ID = f"{OWNER}/leaderboard"
 
14
  RESULTS_REPO = f"{OWNER}/results"
15
 
16
  # If you setup a cache later, just change HF_HOME
17
+ CACHE_PATH = os.getenv("HF_HOME", ".")
18
 
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
+
23
+ CRM_RESULTS_PATH = os.path.join(CACHE_PATH, "crmarena_results")
24
+
25
  EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
26
  EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
27
 
src/leaderboard/read_evals.py CHANGED
@@ -1,6 +1,5 @@
1
  import glob
2
  import json
3
- import math
4
  import os
5
  from dataclasses import dataclass
6
 
@@ -8,28 +7,29 @@ import dateutil
8
  import numpy as np
9
 
10
  from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
 
13
 
14
 
15
  @dataclass
16
  class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
  model: str
23
- revision: str # commit hash, "" if main
24
  results: dict
25
  precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
  license: str = "?"
30
  likes: int = 0
31
  num_params: int = 0
32
- date: str = "" # submission date of request file
33
  still_on_hub: bool = False
34
 
35
  @classmethod
@@ -57,14 +57,14 @@ class EvalResult:
57
  result_key = f"{org}_{model}_{precision.value.name}"
58
  full_model = "/".join(org_and_model)
59
 
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
  architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
 
69
  # Extract results available in this file (some results are split in several files)
70
  results = {}
@@ -85,10 +85,10 @@ class EvalResult:
85
  org=org,
86
  model=model,
87
  results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
  )
93
 
94
  def update_with_request_file(self, requests_path):
@@ -105,7 +105,9 @@ class EvalResult:
105
  self.num_params = request.get("params", 0)
106
  self.date = request.get("submitted_time", "")
107
  except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
 
 
109
 
110
  def to_dict(self):
111
  """Converts the Eval Result to a dict compatible with our dataframe display"""
@@ -146,10 +148,7 @@ def get_request_file_for_model(requests_path, model_name, precision):
146
  for tmp_request_file in request_files:
147
  with open(tmp_request_file, "r") as f:
148
  req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
  request_file = tmp_request_file
154
  return request_file
155
 
@@ -188,7 +187,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
188
  results = []
189
  for v in eval_results.values():
190
  try:
191
- v.to_dict() # we test if the dict version is complete
192
  results.append(v)
193
  except KeyError: # not all eval values present
194
  continue
 
1
  import glob
2
  import json
 
3
  import os
4
  from dataclasses import dataclass
5
 
 
7
  import numpy as np
8
 
9
  from src.display.formatting import make_clickable_model
10
+ from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
11
+
12
+ # from src.submission.check_validity import is_model_on_hub
13
 
14
 
15
  @dataclass
16
  class EvalResult:
17
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run."""
18
+
19
+ eval_name: str # org_model_precision (uid)
20
+ full_model: str # org/model (path on hub)
21
+ org: str
22
  model: str
23
+ revision: str # commit hash, "" if main
24
  results: dict
25
  precision: Precision = Precision.Unknown
26
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
+ weight_type: WeightType = WeightType.Original # Original or Adapter
28
+ architecture: str = "Unknown"
29
  license: str = "?"
30
  likes: int = 0
31
  num_params: int = 0
32
+ date: str = "" # submission date of request file
33
  still_on_hub: bool = False
34
 
35
  @classmethod
 
57
  result_key = f"{org}_{model}_{precision.value.name}"
58
  full_model = "/".join(org_and_model)
59
 
60
+ # still_on_hub, _, model_config = is_model_on_hub(
61
+ # full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
+ # )
63
  architecture = "?"
64
+ # if model_config is not None:
65
+ # architectures = getattr(model_config, "architectures", None)
66
+ # if architectures:
67
+ # architecture = ";".join(architectures)
68
 
69
  # Extract results available in this file (some results are split in several files)
70
  results = {}
 
85
  org=org,
86
  model=model,
87
  results=results,
88
+ precision=precision,
89
+ revision=config.get("model_sha", ""),
90
+ still_on_hub=False,
91
+ architecture=architecture,
92
  )
93
 
94
  def update_with_request_file(self, requests_path):
 
105
  self.num_params = request.get("params", 0)
106
  self.date = request.get("submitted_time", "")
107
  except Exception:
108
+ print(
109
+ f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
110
+ )
111
 
112
  def to_dict(self):
113
  """Converts the Eval Result to a dict compatible with our dataframe display"""
 
148
  for tmp_request_file in request_files:
149
  with open(tmp_request_file, "r") as f:
150
  req_content = json.load(f)
151
+ if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
 
 
 
152
  request_file = tmp_request_file
153
  return request_file
154
 
 
187
  results = []
188
  for v in eval_results.values():
189
  try:
190
+ v.to_dict() # we test if the dict version is complete
191
  results.append(v)
192
  except KeyError: # not all eval values present
193
  continue
src/populate.py CHANGED
@@ -1,58 +1,16 @@
1
- import json
2
  import os
3
 
4
  import pandas as pd
5
 
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
 
 
12
  """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
1
  import os
2
 
3
  import pandas as pd
4
 
5
+ from src.display.utils import AutoEvalColumn
 
 
6
 
7
 
8
+ def get_leaderboard_df_crm(
9
+ crm_results_path: str, cols: list
10
+ ) -> tuple[pd.DataFrame, pd.DataFrame]:
11
  """Creates a dataframe from all the individual experiment results"""
12
+ model_performance_df = pd.read_csv(os.path.join(crm_results_path, "all_results.csv"))
13
+
14
+ model_performance_df = model_performance_df[cols].round(decimals=2)
15
+ model_performance_df = model_performance_df.sort_values("Overall ⬆️", ascending=False)
16
+ return model_performance_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )