Spaces:
Runtime error
Runtime error
Dongxu Li
commited on
Commit
·
81cf2fa
1
Parent(s):
f7f5be8
finish adding opt for captioning.
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ def encode_image(image):
|
|
14 |
return buffered
|
15 |
|
16 |
|
17 |
-
def
|
18 |
image, prompt, decoding_method, temperature, len_penalty, repetition_penalty
|
19 |
):
|
20 |
|
@@ -41,6 +41,34 @@ def query_api(
|
|
41 |
return "Error: " + response.text
|
42 |
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def postprocess_output(output):
|
45 |
# if last character is not a punctuation, add a full stop
|
46 |
if not output[0][-1] in string.punctuation:
|
@@ -49,7 +77,7 @@ def postprocess_output(output):
|
|
49 |
return output
|
50 |
|
51 |
|
52 |
-
def
|
53 |
image,
|
54 |
text_input,
|
55 |
decoding_method,
|
@@ -64,7 +92,7 @@ def inference(
|
|
64 |
prompt = " ".join(history)
|
65 |
print(prompt)
|
66 |
|
67 |
-
output =
|
68 |
image, prompt, decoding_method, temperature, length_penalty, repetition_penalty
|
69 |
)
|
70 |
output = postprocess_output(output)
|
@@ -77,6 +105,20 @@ def inference(
|
|
77 |
return {chatbot: chat, state: history}
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
title = """<h1 align="center">BLIP-2</h1>"""
|
81 |
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
82 |
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
@@ -101,16 +143,15 @@ with gr.Blocks() as iface:
|
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
103 |
image_input = gr.Image(type="pil")
|
104 |
-
text_input = gr.Textbox(lines=2, label="Text input")
|
105 |
-
|
106 |
-
sampling = gr.Radio(
|
107 |
-
choices=["Beam search", "Nucleus sampling"],
|
108 |
-
value="Beam search",
|
109 |
-
label="Text Decoding Method",
|
110 |
-
interactive=True,
|
111 |
-
)
|
112 |
|
113 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
temperature = gr.Slider(
|
115 |
minimum=0.5,
|
116 |
maximum=1.0,
|
@@ -134,13 +175,32 @@ with gr.Blocks() as iface:
|
|
134 |
value=10.0,
|
135 |
step=0.5,
|
136 |
interactive=True,
|
137 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
with gr.Column():
|
|
|
|
|
141 |
with gr.Row():
|
142 |
chatbot = gr.Chatbot()
|
143 |
-
image_input.change(lambda: (None, []), [], [chatbot, state])
|
144 |
|
145 |
with gr.Row():
|
146 |
|
@@ -148,17 +208,17 @@ with gr.Blocks() as iface:
|
|
148 |
clear_button.click(
|
149 |
lambda: ("", None, [], []),
|
150 |
[],
|
151 |
-
[
|
152 |
)
|
153 |
|
154 |
submit_button = gr.Button(
|
155 |
value="Submit", interactive=True, variant="primary"
|
156 |
)
|
157 |
submit_button.click(
|
158 |
-
|
159 |
[
|
160 |
image_input,
|
161 |
-
|
162 |
sampling,
|
163 |
temperature,
|
164 |
len_penalty,
|
@@ -170,7 +230,7 @@ with gr.Blocks() as iface:
|
|
170 |
|
171 |
examples = gr.Examples(
|
172 |
examples=examples,
|
173 |
-
inputs=[image_input,
|
174 |
)
|
175 |
|
176 |
iface.queue(concurrency_count=1, api_open=False, max_size=20)
|
|
|
14 |
return buffered
|
15 |
|
16 |
|
17 |
+
def query_chat_api(
|
18 |
image, prompt, decoding_method, temperature, len_penalty, repetition_penalty
|
19 |
):
|
20 |
|
|
|
41 |
return "Error: " + response.text
|
42 |
|
43 |
|
44 |
+
def query_caption_api(
|
45 |
+
image, decoding_method, temperature, len_penalty, repetition_penalty
|
46 |
+
):
|
47 |
+
|
48 |
+
url = endpoint.url
|
49 |
+
# replace /generate with /caption
|
50 |
+
url = url.replace("/generate", "/caption")
|
51 |
+
|
52 |
+
headers = {"User-Agent": "BLIP-2 HuggingFace Space"}
|
53 |
+
|
54 |
+
data = {
|
55 |
+
"use_nucleus_sampling": decoding_method == "Nucleus sampling",
|
56 |
+
"temperature": temperature,
|
57 |
+
"length_penalty": len_penalty,
|
58 |
+
"repetition_penalty": repetition_penalty,
|
59 |
+
}
|
60 |
+
|
61 |
+
image = encode_image(image)
|
62 |
+
files = {"image": image}
|
63 |
+
|
64 |
+
response = requests.post(url, data=data, files=files, headers=headers)
|
65 |
+
|
66 |
+
if response.status_code == 200:
|
67 |
+
return response.json()
|
68 |
+
else:
|
69 |
+
return "Error: " + response.text
|
70 |
+
|
71 |
+
|
72 |
def postprocess_output(output):
|
73 |
# if last character is not a punctuation, add a full stop
|
74 |
if not output[0][-1] in string.punctuation:
|
|
|
77 |
return output
|
78 |
|
79 |
|
80 |
+
def inference_chat(
|
81 |
image,
|
82 |
text_input,
|
83 |
decoding_method,
|
|
|
92 |
prompt = " ".join(history)
|
93 |
print(prompt)
|
94 |
|
95 |
+
output = query_chat_api(
|
96 |
image, prompt, decoding_method, temperature, length_penalty, repetition_penalty
|
97 |
)
|
98 |
output = postprocess_output(output)
|
|
|
105 |
return {chatbot: chat, state: history}
|
106 |
|
107 |
|
108 |
+
def inference_caption(
|
109 |
+
image,
|
110 |
+
decoding_method,
|
111 |
+
temperature,
|
112 |
+
length_penalty,
|
113 |
+
repetition_penalty,
|
114 |
+
):
|
115 |
+
output = query_caption_api(
|
116 |
+
image, decoding_method, temperature, length_penalty, repetition_penalty
|
117 |
+
)
|
118 |
+
|
119 |
+
return output[0]
|
120 |
+
|
121 |
+
|
122 |
title = """<h1 align="center">BLIP-2</h1>"""
|
123 |
description = """Gradio demo for BLIP-2, a multimodal chatbot from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them. Please visit our <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'>project webpage</a>.</p>
|
124 |
<p> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected. </p>"""
|
|
|
143 |
with gr.Row():
|
144 |
with gr.Column():
|
145 |
image_input = gr.Image(type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
with gr.Row():
|
148 |
+
sampling = gr.Radio(
|
149 |
+
choices=["Beam search", "Nucleus sampling"],
|
150 |
+
value="Beam search",
|
151 |
+
label="Text Decoding Method",
|
152 |
+
interactive=True,
|
153 |
+
)
|
154 |
+
|
155 |
temperature = gr.Slider(
|
156 |
minimum=0.5,
|
157 |
maximum=1.0,
|
|
|
175 |
value=10.0,
|
176 |
step=0.5,
|
177 |
interactive=True,
|
178 |
+
label="Repeat Penalty",
|
179 |
+
)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
caption_output = gr.Textbox(lines=2, label="Caption Output")
|
183 |
+
caption_button = gr.Button(
|
184 |
+
value="Caption it!", interactive=True, variant="primary"
|
185 |
+
)
|
186 |
+
caption_button.click(
|
187 |
+
inference_caption,
|
188 |
+
[
|
189 |
+
image_input,
|
190 |
+
sampling,
|
191 |
+
temperature,
|
192 |
+
len_penalty,
|
193 |
+
rep_penalty,
|
194 |
+
],
|
195 |
+
[caption_output],
|
196 |
)
|
197 |
|
198 |
with gr.Column():
|
199 |
+
chat_input = gr.Textbox(lines=2, label="Chat Input")
|
200 |
+
|
201 |
with gr.Row():
|
202 |
chatbot = gr.Chatbot()
|
203 |
+
image_input.change(lambda: (None, "", "", []), [], [chatbot, chat_input, caption_output, state])
|
204 |
|
205 |
with gr.Row():
|
206 |
|
|
|
208 |
clear_button.click(
|
209 |
lambda: ("", None, [], []),
|
210 |
[],
|
211 |
+
[chat_input, image_input, chatbot, state],
|
212 |
)
|
213 |
|
214 |
submit_button = gr.Button(
|
215 |
value="Submit", interactive=True, variant="primary"
|
216 |
)
|
217 |
submit_button.click(
|
218 |
+
inference_chat,
|
219 |
[
|
220 |
image_input,
|
221 |
+
chat_input,
|
222 |
sampling,
|
223 |
temperature,
|
224 |
len_penalty,
|
|
|
230 |
|
231 |
examples = gr.Examples(
|
232 |
examples=examples,
|
233 |
+
inputs=[image_input, chat_input],
|
234 |
)
|
235 |
|
236 |
iface.queue(concurrency_count=1, api_open=False, max_size=20)
|