Spaces:
Sleeping
Sleeping
Sync App files
Browse files- README.md +1 -5
- drug_app.py +61 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
---
|
2 |
title: Drug Classification
|
3 |
emoji: π
|
4 |
colorFrom: yellow
|
@@ -7,7 +6,4 @@ sdk: gradio
|
|
7 |
sdk_version: 4.41.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
1 |
title: Drug Classification
|
2 |
emoji: π
|
3 |
colorFrom: yellow
|
|
|
6 |
sdk_version: 4.41.0
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: apache-2.0
|
|
|
|
|
|
drug_app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import skops.io as sio
|
3 |
+
from skops.io import get_untrusted_types
|
4 |
+
|
5 |
+
|
6 |
+
untrusted_types = get_untrusted_types(file="./Model/drug_pipeline.skops")
|
7 |
+
|
8 |
+
pipe = sio.load("./Model/drug_pipeline.skops", trusted=untrusted_types)
|
9 |
+
|
10 |
+
|
11 |
+
def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
|
12 |
+
"""Predict drugs based on patient features.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
age (int): Age of patient
|
16 |
+
sex (str): Sex of patient
|
17 |
+
blood_pressure (str): Blood pressure level
|
18 |
+
cholesterol (str): Cholesterol level
|
19 |
+
na_to_k_ratio (float): Ratio of sodium to potassium in blood
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
str: Predicted drug label
|
23 |
+
"""
|
24 |
+
features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
|
25 |
+
predicted_drug = pipe.predict([features])[0]
|
26 |
+
|
27 |
+
label = f"Predicted Drug: {predicted_drug}"
|
28 |
+
return label
|
29 |
+
|
30 |
+
|
31 |
+
inputs = [
|
32 |
+
gr.Slider(15, 74, step=1, label="Age"),
|
33 |
+
gr.Radio(["M", "F"], label="Sex"),
|
34 |
+
gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
|
35 |
+
gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
|
36 |
+
gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
|
37 |
+
]
|
38 |
+
outputs = [gr.Label(num_top_classes=5)]
|
39 |
+
|
40 |
+
examples = [
|
41 |
+
[30, "M", "HIGH", "NORMAL", 15.4],
|
42 |
+
[35, "F", "LOW", "NORMAL", 8],
|
43 |
+
[50, "M", "HIGH", "HIGH", 34],
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
title = "Drug Classification"
|
48 |
+
description = "Enter the details to correctly identify Drug type?"
|
49 |
+
article = "This app is a part of the Beginner's Guide to CI/CD for Machine Learning. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
|
50 |
+
|
51 |
+
|
52 |
+
gr.Interface(
|
53 |
+
fn=predict_drug,
|
54 |
+
inputs=inputs,
|
55 |
+
outputs=outputs,
|
56 |
+
examples=examples,
|
57 |
+
title=title,
|
58 |
+
description=description,
|
59 |
+
article=article,
|
60 |
+
theme=gr.themes.Soft(),
|
61 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|
3 |
+
skops
|
4 |
+
matplotlib
|
5 |
+
gradio
|