File size: 44,951 Bytes
15b5f25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
# /*---------------------------------------------------------------------------------------------
#  * Copyright (c) 2024 STMicroelectronics.
#  * All rights reserved.
#  *
#  * This software is licensed under terms that can be found in the LICENSE file in
#  * the root directory of this software component.
#  * If no LICENSE file comes with this software, it is provided AS-IS.
#  *--------------------------------------------------------------------------------------------*/
import os
import re
import uuid
import time
import shutil
import zipfile
import threading
import subprocess
import select
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor

import dash
from dash import dcc, html
from dash.dependencies import Input, Output, State, ALL
import dash_bootstrap_components as dbc
from dash.exceptions import PreventUpdate

from flask import Flask, render_template, request, send_file, jsonify

import yaml
import ruamel.yaml
import pandas as pd


import logging
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)


server = Flask(__name__)
server.secret_key = os.urandom(24)


@server.route('/')
def welcome_page():
    """
    Handles the welcome page route.

    This function extracts the username from the request host,
    determines if the duplicate mode should be enabled, and renders
    the welcome page template with the duplicate mode state.

    Returns:
        str: The rendered 'index.html' template with the duplicate_mode parameter.
    """
    host = request.host
    print("host:", host)
    usr_match = re.match(r'^(.*?)\-stm32', host)
    print("usr_match:", usr_match)
    
    if usr_match:
        hf_user = usr_match.group(1)
    else:
        hf_user = "modelzoo_user"
        
    if hf_user == "stmicroelectronics":
        duplicate_mode = True
    else:
        duplicate_mode = False

    print("hf_user:", hf_user)
    print("duplicate_mode:", duplicate_mode)
    
    return render_template('index.html', duplicate_mode=duplicate_mode)
    

external_stylesheets = [dbc.themes.LITERA]
app = dash.Dash(__name__, server=server,external_stylesheets=external_stylesheets, url_base_pathname='/dash_app/', suppress_callback_exceptions=True)


local_yamls = {
    'image_classification': 'stm32ai-modelzoo-services/image_classification/src/user_config.yaml',
    'human_activity_recognition': 'stm32ai-modelzoo-services/human_activity_recognition/src/user_config.yaml',
    'hand_posture': 'stm32ai-modelzoo-services/hand_posture/src/user_config.yaml',
    'object_detection': 'stm32ai-modelzoo-services/object_detection/src/user_config.yaml',
    'audio_event_detection': 'stm32ai-modelzoo-services/audio_event_detection/src/user_config.yaml',
    'pose_estimation': 'stm32ai-modelzoo-services/pose_estimation/src/user_config.yaml',
    'semantic_segmentation': 'stm32ai-modelzoo-services/semantic_segmentation/src/user_config.yaml'
}


def banner():
    return html.Div(
        id="banner",
        className="top-bar",
        style={
            "display": "flex",
            "align-items": "center",
            "justify-content": "space-between",
            "position": "fixed",  
            "top": "0",          
            "left": "0",         
            "width": "100%",     
            "z-index": "1000",   
            "background-color": "#3234b",  
            "padding": "10px 20px",  
            "box-shadow": "0px 2px 4px rgba(0, 0, 0, 0.1)"  
        },
        children=[
            html.A(
                id="learn-more-button",
                children=[
                    html.Img(
                        src=app.get_asset_url("github-mark-white.png"),
                        style={"width": "20px", "height": "20px", "margin-right": "10px"}
                    ),
                    "stm32ai-modelzoo",
                ],
                href="https://github.com/STMicroelectronics/stm32ai-modelzoo-services",
                target="_blank",
                style={
                    "display": "flex",
                    "align-items": "center",
                    "color": "#ffffff",
                    "text-decoration": "none",
                    "font-size": "15px",
                    "font-family": "Arial, sans-serif"
                }
            ),
            html.Div(
                html.Img(
                    id="logo",
                    src=app.get_asset_url("ST_logo_2024_white.png"),
                    style={"width": "50px", "height": "auto"}
                ),
                style={"text-align": "center"}
            ),
            html.Div(
                [
                    html.A(
                        [
                            html.H5(
                                "ST Edge AI Developer Cloud",
                                style={
                                    "margin": "0",
                                    "text-align": "right",
                                    "color": "#ffffff",
                                    "font-size": "15px",
                                    "font-weight": "bold",
                                    "font-family": "Arial, sans-serif"
                                }
                            )
                        ],
                        href="https://stm32ai-cs.st.com/home",
                        target="_blank",
                        style={
                            "display": "flex",
                            "align-items": "center",
                            "text-decoration": "none"
                        }
                    )
                ],
                style={"padding-right": "10px"}
            )
        ]
    )


def read_configs(selected_model):
    """
    Loads a YAML file based on the selected model by the user.

    Args:
        selected_model (str): The key to select the appropriate YAML file path.

    Returns:
        dict: The loaded YAML data.
    """
    if not selected_model:
        raise ValueError("No model selected. Please select a valid model.")
    if selected_model not in local_yamls:
        raise ValueError(f"Model '{selected_model}' not found in local_yamls")
    
    yaml_path = local_yamls[selected_model]
    try:
        with open(yaml_path, 'r') as file:
            return yaml.safe_load(file)
    except Exception as e:
        raise ValueError(f"Error reading YAML file at {yaml_path}: {e}")
        

def build_yaml_form(yaml_content, parent_key=''):
    """
    Recursively builds a form based on the provided YAML content.

    Parameters:
    - yaml_content (dict): The YAML content to build the form from.
    - parent_key (str): The parent key to maintain the hierarchy of nested keys. Default is an empty string.

    Returns:
    - list: A list of Dash Bootstrap Components (dbc) AccordionItems representing the form fields.
    """
    accordion_items = []
    for key, value in yaml_content.items():
        full_key = f"{parent_key}.{key}" if parent_key else key

        if isinstance(value, dict):  
            nested_accordion = build_yaml_form(value, full_key)
            accordion_items.append(
                dbc.AccordionItem(
                    nested_accordion,
                    title=key.capitalize()
                )
            )
        else:
          
            field = [html.Label(key, style={"font-weight": "bold", "margin-bottom": "5px"})]
            
            if isinstance(value, bool):  
                field.append(
                    dcc.Checklist(
                        id={'type': 'yaml-setting', 'index': full_key},
                        options=[{'label': '', 'value': True}],
                        value=[True] if value else [],
                        style={"padding": "10px", "border": "1px solid #ddd", "margin-bottom": "10px"}
                    )
                )
            elif isinstance(value, list):   
                field.append(
                    dcc.Dropdown(
                        id={'type': 'yaml-setting', 'index': full_key},
                        options=[{'label': str(v), 'value': v} for v in value],
                        value=value,
                        multi=True,
                        style={"padding": "10px", "border": "1px solid #ddd", "margin-bottom": "10px"}
                    )
                )
            else: 
                field.append(
                    dcc.Input(
                        id={'type': 'yaml-setting', 'index': full_key},
                        value=value,
                        type='text',
                        style={"padding": "10px", "border": "1px solid #ddd", "margin-bottom": "10px"}
                    )
                )
            
            accordion_items.append(
                dbc.AccordionItem(
                    field,
                    title=key.capitalize()
                )
            )
    
    return accordion_items


def create_yaml(yaml_content):
    """
    Creates a YAML form using Dash Bootstrap Components (dbc) and Dash HTML Components (html).

    Parameters:
    yaml_content (dict): The content of the YAML file to be used for building the form.

    Returns:
    dbc.Form: A Dash form component containing an accordion with the YAML content and a submit button.
    """
    accordion_items = build_yaml_form(yaml_content)
    accordion = dbc.Accordion(
        accordion_items,
        start_collapsed=True  
    )
    
    return dbc.Form([
    accordion,
    html.Div(
        dbc.Button(
            'Submit',
            id='apply-button',
            style={
                'background-color': '#FFD200',  
                'color': '#03234b',              
                'font-size': '14px',           
                'padding': '10px 10px 10px 10px',        
                'border-radius': '5px',        
                'margin-top': '15px',
                'border': '2px solid #FFD200',
                'box-shadow': '0px 4px 6px rgba(0, 0, 0, 0.1)',
            }
        ),
        style={
            'display': 'flex',
            'justify-content': 'center',  
            'margin-top': '15px',
        }
    ),
    html.Div(
        id='submission-outcome',
        style={
            'marginTop': '10px',
            'textAlign': 'center',  
            'fontStyle': 'italic',  
            'color': '#03234b',
            'font-size': '14px'
        }
    )
])


def process_form_configs(form_configs):
    """
    Extracts and processes form data to update YAML content.

    This function processes the form data, converting values to appropriate types
    and updating the YAML content accordingly.

    Args:
        form_configs (dict): The form data to be processed.

    Returns:
        dict: The updated YAML content with processed form data.
    """
    updated_yaml = {}
    for key, value in form_configs.items():
        if value is not None:
            if isinstance(value, list) and len(value) == 1:
                value = value[0]
                
            if isinstance(value, str):
                try:
                    if '.' in value:
                        value = float(value)
                    else:
                        value = int(value)
                except ValueError:
                    pass 
            
            updated_yaml[key] = value

    return updated_yaml
    
    
def create_archive(archive_path, directory_to_compress):
    """
    Creates a ZIP archive of a specified directory.

    Parameters:
    archive_path (str): The path where the ZIP archive will be created.
    directory_to_compress (str): The directory whose contents will be compressed into the ZIP archive.

    Returns:
    None
    """
    def add_file_to_zip(zipf, file_path, arcname):
        """
        Adds a file to the ZIP archive.

        Parameters:
        zipf (zipfile.ZipFile): The ZIP file object.
        file_path (str): The path of the file to add to the ZIP archive.
        arcname (str): The archive name for the file within the ZIP archive.

        Returns:
        None
        """
        zipf.write(file_path, arcname=arcname)

    with zipfile.ZipFile(archive_path, 'w', compression=zipfile.ZIP_DEFLATED) as zipf:
        with ThreadPoolExecutor() as executor:
            for root_dir, sub_dirs, files in os.walk(directory_to_compress):
                for file_name in files:
                    file_path = os.path.join(root_dir, file_name)
                    if os.path.abspath(file_path) != os.path.abspath(archive_path):
                        arcname = os.path.relpath(file_path, directory_to_compress)
                        executor.submit(add_file_to_zip, zipf, file_path, arcname)
    

def create_dashboard_layout():
    """
    Creates the layout for the application: STM32ModelZoo dashboard.

    This function defines the structure and components of the dashboard,
    including the banner, model selection dropdown, YAML update options,
    credentials input, output display, training metrics graphs, and download button.

    Returns:
        dbc.Container: A Dash Bootstrap Component container with the dashboard layout.
    """
    return html.Div([
        banner(),
        dbc.Container([
            dcc.Location(id='url', refresh=False),
            dbc.Row(dbc.Col(html.H3("STM32 Modelzoo", style={'color': '#03234b', 'text-align': 'center',"margin-top": "80px", "font-family": "Arial, sans-serif"}), className="mb-4")),
            dbc.Row([
                dbc.Col(
                    html.H5("Use case selection", style={'color': '#03234b', 'margin-bottom': '10px'}),
                    width=12  
                )
            ], id="use-case-section", style={"display": "none"}),
            dbc.Row(dbc.Col(dcc.Dropdown(
                id='selected-model',
                options=[
                    {'label': 'Image Classification (IC)', 'value': 'image_classification'},
                    {'label': 'Human Activity Recognition (HAR)', 'value': 'human_activity_recognition'},
                    {'label': 'Hand Posture', 'value': 'hand_posture'},
                    {'label': 'Audio Event Detection(AED)', 'value': 'audio_event_detection'},
                    {'label': 'Object Detection', 'value': 'object_detection'},
                    {'label': 'Pose estimation', 'value': 'pose_estimation'},
                    {'label': 'Semantic Segmentation', 'value': 'semantic_segmentation'},
                ],
                placeholder="Please select your use case",
                className="mb-4"
            ))),
            
            dbc.Row(
                dbc.Col(
                    html.Div(
                        id='toggle-yaml',
                        children=[
                            html.P([
                                "Please update the YAML file: Dataset path (example: ../datasets/your_use_case/name_of_dataset) or datasets/your_prepared_dataset. For more details, refer to the ",
                                html.A("README", href="https://huggingface.co/spaces/STMicroelectronics/stm32-modelzoo-app/blob/main/datasets/README.md", target="_blank", style={'color': '#007bff', 'text-decoration': 'underline'}),
                                "."
                            ], style={'font-family': 'Arial, sans-serif', 'color': '#03234b', 'fontSize': '15px'}),
                            dcc.RadioItems(
                                id='modify-yaml-choice',
                                labelStyle={'display': 'inline-block', 'margin-right': '10px'},
                                className="mb-4",
                            ),
                            dcc.Upload(
                                id='load-yaml-file',
                                children=html.Button('Upload YAML File'),
                                style={'display': 'none'}
                            ),
                            html.Div(id='load-state', style={'margin-top': '10px'}),
                            html.Div(id='yaml-layout', style={'display': 'none'})
                        ],
                        style={'font-family': 'Arial, sans-serif', 'display': 'none'}
                    )
                )
            ),
            dbc.Row([
                dbc.Col([
                    html.P("Enter your ST Edge AI Developer Cloud credentials:", style={'color': '03234b', 'fontSize': '15px', 'fontWeight': 'bold'}, className="credentials-text"),
                    dcc.Input(id='devcloud-username-input', type='text', placeholder='Enter username', className="input-field mb-2"),
                    dcc.Input(id='devcloud-password-input', type='password', placeholder='Enter password', className="input-field mb-4")
                ], width=6),
                dbc.Col([
                    dbc.Button('Launch training', id='process-button', color="#3234b", className="start-button mb-4", style={'display': 'none', 'box-shadow': '0px 4px 6px rgba(0, 0, 0, 0.1)'})
                ], className="credentials-col")
            ], id='credentials-section', style={
                'display': 'none',
                'justify-content': 'center',
                'align-items': 'center',
                'height': '100vh',
            }, className="credentials-section mb-4"),
            
            dbc.Row([
                dbc.Col(
                    html.H5("Results visualization", style={'color': '#03234b', 'margin-bottom': '10px'}),
                    width=12  
                )
            ], id="results-section", style={"display": "none"}),
            dbc.Row([
                dbc.Col(dbc.Card([
                    dbc.CardHeader("Command output"),
                    dbc.CardBody(
                        html.Div(id='log-reader', style={'whiteSpace': 'pre-wrap', 'padding-top': '15px', 'height': '100%', 'overflow': 'auto'}),
                        style={'height': '300px'}
                    )
                ]))
            ],style={'margin-bottom': '30px'}),
            dbc.Row([
                dbc.Col(dbc.Card([
                    dbc.CardHeader("Metrics", style={'background-color': '#03234b', 'color': 'white'}),
                    dbc.CardBody(
                        dcc.Graph(id='acc-visualization', style={'height': '100%', 'width': '100%'}),
                        style={'height': '400px', 'display': 'flex', 'justify-content': 'center', 'align-items': 'center'}
                    )
                ]), width=6, style={'padding': '10px'}),
                dbc.Col(dbc.Card([
                    dbc.CardHeader("Metrics", style={'background-color': '#03234b', 'color': 'white'}),
                    dbc.CardBody(
                        dcc.Graph(id='loss-visualization', style={'height': '100%', 'width': '100%'}),
                        style={'height': '400px', 'display': 'flex', 'justify-content': 'center', 'align-items': 'center'}
                    )
                ]), width=6, style={'padding': '10px'})
            ], style={'margin-bottom': '30px'}),
            
            dcc.Interval(id='interval-widget', interval=1000, n_intervals=0),
            dcc.Download(id="download-resource"),
            dbc.Row(
                dbc.Col(
                    dbc.Button('Download outputs', id='download-action', className="mb-4", style={
                        'background-color': '#ffd200',  
                        'color': '#ffffff',           
                        'font-size': '14px',
                        'padding': '10px 10px',
                        'border-radius': '5px',
                        'box-shadow': '0px 4px 6px rgba(0, 0, 0, 0.1)',
                        'margin-top': '20px' 
                    }),
                    style={
                        'display': 'flex',
                        'justify-content': 'center',
                        'alignItems': 'center',
                    }
                )
            )
        ], fluid=True)
    ])

app.layout = create_dashboard_layout

logs = []
lock = threading.Lock()
new_training = False

def fill_logs(message):
    """
    Appends a message to the logs list in a thread-safe manner.

    Parameters:
    message (str): The message to be appended to the logs.

    Returns:
    None
    """
    with lock:
        logs.append(message)

def run_script(script, devcloud_username, devcloud_password):
    """
    Executes a given script with the provided ST Developer Cloud credentials and logs the output.

    Parameters:
    - script (str): The path to the script to be executed.
    - devcloud_username (str): Username for ST Developer Cloud.
    - devcloud_password (str): Password for ST Developer Cloud.

    Returns:
    - None
    """
    global logs

    with lock:
        logs = []

    os.environ['stmai_username'] = devcloud_username
    os.environ['stmai_password'] = devcloud_password
    os.environ['STATS_TYPE'] = 'HuggingFace_devcloud'

    execution = subprocess.Popen(['python3', script], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
    while True:
        file_descriptors = [execution.stdout.fileno(), execution.stderr.fileno()]
        selected_descriptors = select.select(file_descriptors, [], [])

        for descriptor in selected_descriptors[0]:
            if descriptor == execution.stdout.fileno():
                out = execution.stdout.readline()
                if out:
                    fill_logs(out)
                if out == '' and execution.poll() is not None:
                    return
            if descriptor == execution.stderr.fileno():
                error = execution.stderr.readline()
                if error:
                    fill_logs(error)

def execute_async(script, devcloud_username, devcloud_password):
    """
    Executes a Python script asynchronously in a separate thread.

    Parameters:
    script (str): The path to the Python script to be executed.
    devcloud_username (str): The username for the DevCloud environment.
    devcloud_password (str): The password for the DevCloud environment.

    Returns:
    None
    """
    thread = threading.Thread(target=run_script, args=(script, devcloud_username, devcloud_password))
    thread.start()


@app.callback(
    Output("config-section", "style"),
    Input('selected-model', 'value')
)   
def toggle_config_section(selected_model):
    """
    Toggles the visibility of the configuration section based on the selected model.

    Parameters:
    selected_model (str): The value of the selected model from the dropdown.

    Returns:
    dict: A dictionary containing the CSS style for the configuration section.
    """
    if selected_model:
        return {"display": "block"} 
    else:
        return {"display": "none"}  
        

@app.callback(
    Output('toggle-yaml', 'style'),
    Input('selected-model', 'value')
)
def dipslay_yaml_container(selected_model):
    """
    Toggles the display of the YAML update container based on the selected model.

    This function updates the CSS style of the YAML update container to either
    show or hide it based on whether a model is selected from the dropdown.

    Args:
        selected_model (str): The selected model from the dropdown.

    Returns:
        dict: A dictionary containing the CSS style to either display or hide the container.
    """
    if selected_model:
        return {'display': 'block'}
    return {'display': 'none'}

@app.callback(
    [Output('yaml-layout', 'style'),
     Output('yaml-layout', 'children')],
    [Input('modify-yaml-choice', 'value'),
     Input('selected-model', 'value')]
)

def display_yaml_form(selection_update, selected_model):
    """
    Toggles the display of the YAML form and updates its content based on user input.

    This function updates the CSS style and content of the YAML form based on whether
    the user chooses to update the YAML file and a model is selected from the dropdown.

    Args:
        selection_update (str): The user's choice to update the YAML file ('yes' or 'no').
        selected_model (str): The selected model from the dropdown.

    Returns:
        tuple: A tuple containing the CSS style to either display or hide the form,
               and the form content generated from the YAML data.
    """

    if not selected_model:
        return {'display': 'none'}, "Please select a model to display its configuration."

    try:
        yaml_conf = read_configs(selected_model)
        form_conf = create_yaml(yaml_conf)
        return {'display': 'block'}, form_conf
    except ValueError as e:
        return {'display': 'none'}, f"Error: {str(e)}"
    except Exception as e:
        return {'display': 'none'}, f"Unexpected Error: {str(e)}"



@app.callback(
    Output('credentials-section', 'style'),
    [Input('modify-yaml-choice', 'value'),
     Input('selected-model', 'value'),
     Input('apply-button', 'n_clicks')]
     
)
def display_credentials(selection_update, selected_model, n_clicks):
    """
    Toggles the display of the credentials input fields based on user input.

    This function updates the CSS style of the credentials input fields to either
    show or hide them based on the user's choice to update the YAML file and the
    selection of a model from the dropdown.

    Args:
        selection_update (str): The user's choice to update the YAML file ('yes' or 'no').
        selected_model (str): The selected model from the dropdown.

    Returns:
        dict: A dictionary containing the CSS style to either display or hide the credentials input fields.
    """
    if n_clicks is None or n_clicks == 0:
        return {'display': 'none'}
    return {'display': 'block'}
 

@app.callback(
    Output('process-button', 'style'),
    [Input('apply-button', 'n_clicks')]
     
)
def display_launch_training(n_clicks):
    """
    Displays the process button based on the number of clicks on the apply button.

    Parameters:
    n_clicks (int): The number of times the apply button has been clicked.

    Returns:
    dict: A dictionary containing the CSS style for the process button.
    """
    if n_clicks and n_clicks > 0:  
        return {'display': 'inline-block'}  
    return {'display': 'none'}  
    
@app.callback(
    Output("results-section", "style"),
    Input('process-button', 'n_clicks')
)
def display_results_section(n_clicks):
    """
    Displays the results section based on the number of clicks on the process button.

    Parameters:
    n_clicks (int): The number of times the process button has been clicked.

    Returns:
    dict: A dictionary containing the CSS style for the results section.
    """
    if n_clicks and n_clicks > 0: 
        return {"display": "block"} 
    else:
        return {"display": "none"}  
        


@app.callback(
    [Output('log-reader', 'children'),
     Output('acc-visualization', 'figure'),
     Output('acc-visualization', 'style'),
     Output('loss-visualization', 'figure'),
     Output('loss-visualization', 'style')],
    [Input('interval-widget', 'n_intervals'),
     Input('process-button', 'n_clicks')],
    [State('selected-model', 'value'),
     State('devcloud-username-input', 'value'),
     State('devcloud-password-input', 'value')]
)
def refresh_metrics(n_intervals, nb_clicks, selected_model, devcloud_username, devcloud_password):
    """
    Updates the log display and training metrics based on user actions and intervals.

    This function handles the following:
    - Executes the training script when the run button is clicked and updates the logs.
    - Periodically checks for new training metrics and updates the accuracy and loss graphs.
    - Manages the display of the log and metrics components based on the training status.

    Args:
        n_intervals (int): The number of intervals that have passed for the interval component.
        nb_clicks (int): The number of times the run button has been clicked.
        selected_model (str): The selected model from the dropdown.
        devcloud_username (str): The username for authentication.
        devcloud_password (str): The password for authentication.

    Returns:
        tuple: A tuple containing:
            - str: The updated log messages.
            - dict: The figure data for the accuracy graph.
            - dict: The CSS style to display or hide the accuracy graph.
            - dict: The figure data for the loss graph.
            - dict: The CSS style to display or hide the loss graph.

    Raises:
        PreventUpdate: If the callback context is not triggered by a relevant input.
    """

    global logs, new_training

    callback_context = dash.callback_context
    if not callback_context.triggered:
        raise PreventUpdate

    button = callback_context.triggered[0]['prop_id'].split('.')[0]

    if button == 'process-button' and nb_clicks:
        if devcloud_username and devcloud_password:
            st_script = f"stm32ai-modelzoo-services/{selected_model}/src/stm32ai_main.py"
            execute_async(st_script, devcloud_username, devcloud_password)
            new_training = True
            logs.append("Starting application ...")
            return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}
        else:
            logs.append("Please enter both ST Developer Cloud username and password:")
            return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}

    elif button == 'interval-widget':
        if not new_training:
            return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}

        outputs_folder = "experiments_outputs"
        
        if not os.path.exists(outputs_folder):
            os.makedirs(outputs_folder) 
            return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}

        dated_directories = [d for d in os.listdir(outputs_folder) if os.path.isdir(os.path.join(outputs_folder, d)) and d.startswith('20')]
        if dated_directories:
            recent_directory = max(dated_directories, key=lambda d: datetime.strptime(d, '%Y_%m_%d_%H_%M_%S'))
            train_metrics_file = os.path.join(outputs_folder, recent_directory, 'logs', 'metrics', 'train_metrics.csv')
            print(f"Metrics file : {train_metrics_file}")
            if os.path.exists(train_metrics_file) and new_training:
                metrics_dataframe = pd.read_csv(train_metrics_file)
                if not metrics_dataframe.empty:
                    figures = []
                    metrics_pairs = [
                        ('accuracy', 'val_accuracy'),
                        ('loss', 'val_loss'),
                        ('oks', 'val_oks'),
                        ('val_map',) 
                    ]
                    
                    for pair in metrics_pairs:
                        if len(pair) == 2:
                            train_metric, val_metric = pair
                            if train_metric in metrics_dataframe.columns and val_metric in metrics_dataframe.columns:
                                fig = {
                                    'data': [
                                        {
                                            'x': metrics_dataframe['epoch'],
                                            'y': metrics_dataframe[train_metric],
                                            'type': 'line',
                                            'name': train_metric.capitalize(),
                                            'line': {'color': '#FFD200', 'width': 2, 'dash': 'solid'},
                                            'hoverinfo': 'x+y+name',
                                            'hoverlabel': {'bgcolor': '#EEEFF1', 'font': {'color': '#525A63'}}
                                        },
                                        {
                                            'x': metrics_dataframe['epoch'],
                                            'y': metrics_dataframe[val_metric],
                                            'type': 'line',
                                            'name': val_metric.capitalize(),
                                            'line': {'color': '#3CB4E6', 'width': 2, 'dash': 'solid'},
                                            'hoverinfo': 'x+y+name',
                                            'hoverlabel': {'bgcolor': '#EEEFF1', 'font': {'color': '#525A63'}}
                                        }
                                    ],
                                    'layout': {
                                        'xaxis': {
                                            'title': 'Epochs',
                                            'showgrid': True,
                                            'gridcolor': '#EEEFF1',
                                            'tickangle': 45
                                        },
                                        'yaxis': {
                                            'title': train_metric.capitalize(),
                                            'showgrid': True,
                                            'gridcolor': '#EEEFF1'
                                        },
                                        'showlegend': True,
                                        'legend': {
                                            'x': 1,
                                            'y': 1,
                                            'traceorder': 'normal',
                                            'font': {'size': 10},
                                            'bgcolor': '#EEEFF1',
                                            'bordercolor': '#A6ADB5',
                                            'borderwidth': 1
                                        },
                                        'hovermode': 'closest',
                                        'plot_bgcolor': '#ffffff'
                                    }
                                }
                                figures.append(fig)
                        elif len(pair) == 1:
                            val_metric = pair[0]
                            if val_metric in metrics_dataframe.columns:
                                fig = {
                                    'data': [
                                        {
                                            'x': metrics_dataframe['epoch'],
                                            'y': metrics_dataframe[val_metric],
                                            'type': 'line',
                                            'name': val_metric.capitalize(),
                                            'line': {'color': '#3CB4E6', 'width': 2, 'dash': 'solid'},
                                            'hoverinfo': 'x+y+name',
                                            'hoverlabel': {'bgcolor': '#EEEFF1', 'font': {'color': '#525A63'}}
                                        }
                                    ],
                                    'layout': {
                                        'xaxis': {
                                            'title': 'Epochs',
                                            'showgrid': True,
                                            'gridcolor': '#EEEFF1',
                                            'tickangle': 45
                                        },
                                        'yaxis': {
                                            'title': val_metric.capitalize(),
                                            'showgrid': True,
                                            'gridcolor': '#EEEFF1'
                                        },
                                        'showlegend': True,
                                        'legend': {
                                            'x': 1,
                                            'y': 1,
                                            'traceorder': 'normal',
                                            'font': {'size': 10},
                                            'bgcolor': '#EEEFF1',
                                            'bordercolor': '#A6ADB5',
                                            'borderwidth': 1
                                        },
                                        'hovermode': 'closest',
                                        'plot_bgcolor': '#ffffff'
                                    }
                                }
                                figures.append(fig)

                    if figures:
                        return "\n".join(logs), figures[0], {'display': 'block'}, figures[1] if len(figures) > 1 else {}, {'display': 'block'}
                    else:
                        return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}
                else:
                    return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}
            else:
                return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}
        else:
            return "\n".join(logs), {}, {'display': 'none'}, {}, {'display': 'none'}

    raise PreventUpdate
@app.callback(
    Output('submission-outcome', 'children'),
    [Input('apply-button', 'n_clicks'),
     Input('process-button', 'n_clicks')],
    [State({'type': 'yaml-setting', 'index': ALL}, 'id'),
     State({'type': 'yaml-setting', 'index': ALL}, 'value'),
     State('selected-model', 'value'),
     State('devcloud-username-input', 'value'),
     State('devcloud-password-input', 'value')]
)
def process_button_actions(submit_clicks, exec_nb_clicks, form_input_ids, form_input_values, selected_model, devcloud_username, devcloud_password):
    """
    Handles the actions triggered by the submit and run buttons.

    This function processes the form data when the submit button is clicked,
    updates the corresponding YAML file, and executes the training script when
    the run button is clicked.

    Args:
        submit_clicks (int): The number of times the submit button has been clicked.
        exec_nb_clicks (int): The number of times the execution/run button has been clicked.
        form_input_ids (list): A list of dictionaries containing the IDs of the form inputs.
        form_input_values (list): A list of values from the form inputs.
        selected_model (str): The selected model from the dropdown.
        devcloud_username (str): The username for DevCloud authentication.
        devcloud_password (str): The password for DevCloud authentication.

    Returns:
        str: A message indicating the result of the action, such as successful YAML update or script execution status.

    Raises:
        PreventUpdate: If the callback context is not triggered by a relevant input or if no action is taken.
    """
    new_fields = []

    callback_context = dash.callback_context
    if not callback_context.triggered:
        raise PreventUpdate

    triggered_button  = callback_context.triggered[0]['prop_id'].split('.')[0]

    if triggered_button  == 'apply-button':
        if submit_clicks:
            try:
                form_fields_data = {}
                for i in range(len(form_input_ids)):
                    input_id = form_input_ids[i]['index']
                    input_value = form_input_values[i]
                    form_fields_data[input_id] = input_value

                yaml_file_path  = local_yamls.get(selected_model)
                if yaml_file_path :
                    yaml_parser = ruamel.yaml.YAML()
                    with open(yaml_file_path , 'r') as file:
                        current_yaml_data = yaml_parser.load(file)

                    updated_yaml_data = process_form_configs(form_fields_data)
                    for key, value in updated_yaml_data.items():
                        keys = key.split('.')
                        nested_dict = current_yaml_data
                        for k in keys[:-1]:
                            nested_dict = nested_dict.setdefault(k, {})
                        if nested_dict[keys[-1]] != value:
                            nested_dict[keys[-1]] = value
                            new_fields.append(key)

                    with open(yaml_file_path , 'w') as file:
                        yaml_parser.dump(current_yaml_data, file)

                    return f"User config yaml file has been updated successfully ! Updated fields are: {', '.join(new_fields)}"
                else:
                    return f"ERROR: No user config yaml found for '{selected_model}'."
            except Exception as e:
                return f"ERROR: UPDATING USER CONFIG YAML file: {e}"
        else:
            raise PreventUpdate
    elif triggered_button  == 'process-button':
        if exec_nb_clicks:
            st_script = f"stm32ai-modelzoo-services/{selected_model}/src/stm32ai_main.py"
            execute_async(st_script, devcloud_username, devcloud_password)
            return "Application is running ..."
        else:
            raise PreventUpdate
            


@app.callback(
    Output('download-action', 'style'),
    [Input('interval-widget', 'n_intervals')],
    [State('selected-model', 'value')]
)
def toggle_download_button(n_intervals, selected_model):
    """
    Toggles the display of the download button based on the existence of output directories.

    This function checks if the output directories for the selected model exist and
    toggles the display of the download button accordingly.

    Args:
        n_intervals (int): The number of intervals that have passed for the interval component.
        model_choice (str): The selected model from the dropdown.

    Returns:
        dict: A dictionary containing the CSS style to either display or hide the download button.
    """
    out_directory  = os.path.join(os.getcwd(), "experiments_outputs")

    if not os.path.exists(out_directory ):
        return {'display': 'none'}

    output_subdirectories = [d for d in os.listdir(out_directory ) if os.path.isdir(os.path.join(out_directory , d)) and d.startswith('20')]

    if output_subdirectories:
        return {'display': 'block'}
    return {'display': 'none'}


@app.callback(
    Output('download-resource', 'data'),
    [Input('download-action', 'n_clicks')],
    [State('selected-model', 'value')]
)
def generate_download_link(n_clicks, selected_model):
    """
    Generates a download link based on the selected model and operation mode.

    This function reads the YAML configuration for the selected model, determines the operation mode,
    and generates a download link for the appropriate file (ZIP or ELF/BIN) based on the operation mode.

    Args:
        click_count (int): The number of times the download button has been clicked.
        selected_model (str): The selected model from the dropdown.

    Returns:
        dcc.send_file: A Dash component to send the file for download.

    Raises:
        PreventUpdate: If no relevant action is taken or the required files do not exist.
    """
    
    if n_clicks is None:
        raise PreventUpdate


    output_directory  = os.path.join(os.getcwd(), "./experiments_outputs")

    if not os.path.exists(output_directory ):
        raise PreventUpdate


    timestamped_directories = [d for d in os.listdir(output_directory ) if os.path.isdir(os.path.join(output_directory , d)) and d.startswith('20')]

    timestamped_directories = [
        d for d in os.listdir(output_directory)
        if os.path.isdir(os.path.join(output_directory, d)) and d.startswith("20")
    ]

    if timestamped_directories:
        recent_directory = max(
            timestamped_directories, 
            key=lambda d: datetime.strptime(d, "%Y_%m_%d_%H_%M_%S")
        )
        recent_directory_path = os.path.join(output_directory, recent_directory)
        zip_file_path = os.path.join(recent_directory_path, f"{recent_directory}.zip")

           
        if not os.path.exists(zip_file_path):
            create_archive(zip_file_path, recent_directory_path)

           
        if os.path.exists(zip_file_path):
            return dcc.send_file(zip_file_path)

    raise PreventUpdate
    
@server.route('/download/<path:subpath>')
def download_file(subpath):
    """
    Route to download a file from the server.

    Parameters:
    - subpath (str): The subpath of the file to be downloaded, relative to the './experiments_outputs' directory.

    Returns:
    - Response: A Flask response object to send the file as an attachment if it exists.
    - tuple: A tuple containing an error message and a 404 status code if the file is not found.
    """
    file_path = os.path.join(os.getcwd(), './experiments_outputs', subpath)
    if os.path.exists(file_path):
        return send_file(file_path, as_attachment=True)
    else:
        return "File not found", 404
        
        
if __name__ == '__main__':
    app.run_server(host='0.0.0.0',port=7860, dev_tools_ui=True, dev_tools_hot_reload=True, threaded=True)