xinwei89 commited on
Commit
8ae7071
Β·
1 Parent(s): 8fc220a
app.py CHANGED
@@ -1,65 +1,25 @@
1
- """
2
- tree-segmentation
3
- Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees.
4
- """
5
- import os
6
- import cv2
7
- os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
8
- from transformers import DetrFeatureExtractor, DetrForSegmentation
9
- from PIL import Image
10
  import gradio as gr
11
- import numpy as np
12
- import torch
13
- import torchvision
14
- import detectron2
15
 
16
- # import some common detectron2 utilities
17
- import itertools
18
- import seaborn as sns
19
- from detectron2 import model_zoo
20
- from detectron2.engine import DefaultPredictor
21
- from detectron2.config import get_cfg
22
- from detectron2.utils.visualizer import Visualizer
23
- from detectron2.utils.visualizer import ColorMode
24
- from detectron2.data import MetadataCatalog, DatasetCatalog
25
- from detectron2.checkpoint import DetectionCheckpointer
26
 
27
- cfg = get_cfg()
28
- cfg.merge_from_file("model_weights/treev1_cfg.yaml")
29
- cfg.MODEL.DEVICE='cpu'
30
- cfg.MODEL.WEIGHTS = "model_weights/treev1_best.pth"
31
- cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
32
-
33
- def segment_image(im):
34
-
35
- cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25
36
- predictor = DefaultPredictor(cfg)
37
- im = np.array(im)
38
- outputs = predictor(im)
39
- v = Visualizer(im[:, :, ::-1],
40
- scale=0.5,
41
- instance_mode=ColorMode.SEGMENTATION
42
- )
43
- print(len(outputs["instances"])," trees detected.")
44
- out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
45
-
46
- return Image.fromarray(out.get_image()[:, :, ::-1])
47
-
48
- # gradio components
49
- """
50
- gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7,
51
- label='Set confidence threshold % for masks')
52
- """
53
  # gradio outputs
54
- inputs = gr.inputs.Image(type="pil", label="Input Image")
55
- outputs = gr.outputs.Image(type="pil", label="Output Image")
 
56
 
57
- title = "Tree Segmentation"
58
- description = "An instance segmentation demo for identifying trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
 
 
 
 
 
 
59
 
60
- # Create user interface and launch
61
- gr.Interface(segment_image,
62
- inputs = inputs,
63
- outputs = outputs,
64
- title = title,
65
- description = description).launch(debug=True)
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from backend import visualize_image
 
 
 
3
 
4
+ # gradio inputs
5
+ image_input = gr.inputs.Image(type="pil", label="Input Image")
6
+ mode_dropdown = gr.inputs.Dropdown(["Trees", "Buildings", "Both"])
7
+ tree_threshold_slider = gr.inputs.Slider(0, 1, 0.1, 0.7, label='Set confidence threshold % for trees')
8
+ building_threshold_slider = gr.inputs.Slider(0, 1, 0.1, 0.7, label='Set confidence threshold % for buildings')
9
+ color_mode_select = gr.inputs.Radio(["Black/white", "Random", "Segmentation"])
 
 
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  # gradio outputs
12
+ output_image = gr.outputs.Image(type="pil", label="Output Image")
13
+ title = "Building Segmentation"
14
+ description = "An instance segmentation demo for identifying boundaries of buildings in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
15
 
16
+ # gradio interface
17
+ interface = gr.Interface(
18
+ fn=visualize_image,
19
+ inputs=[image_input, mode_dropdown, tree_threshold_slider, building_threshold_slider, color_mode_select],
20
+ outputs=output_image,
21
+ title=title,
22
+ description=description
23
+ )
24
 
25
+ interface.launch(debug=True)
 
 
 
 
 
app_old.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ tree-segmentation
3
+ Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees.
4
+ """
5
+ import os
6
+ import cv2
7
+ os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
8
+ from transformers import DetrFeatureExtractor, DetrForSegmentation
9
+ from PIL import Image
10
+ import gradio as gr
11
+ import numpy as np
12
+ import torch
13
+ import torchvision
14
+ import detectron2
15
+
16
+ # import some common detectron2 utilities
17
+ import itertools
18
+ import seaborn as sns
19
+ from detectron2 import model_zoo
20
+ from detectron2.engine import DefaultPredictor
21
+ from detectron2.config import get_cfg
22
+ from detectron2.utils.visualizer import Visualizer
23
+ from detectron2.utils.visualizer import ColorMode
24
+ from detectron2.data import MetadataCatalog, DatasetCatalog
25
+ from detectron2.checkpoint import DetectionCheckpointer
26
+
27
+ cfg = get_cfg()
28
+ cfg.merge_from_file("model_weights/treev1_cfg.yaml")
29
+ cfg.MODEL.DEVICE='cpu'
30
+ cfg.MODEL.WEIGHTS = "model_weights/treev1_best.pth"
31
+ cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
32
+
33
+ def segment_image(im):
34
+
35
+ cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25
36
+ predictor = DefaultPredictor(cfg)
37
+ im = np.array(im)
38
+ outputs = predictor(im)
39
+ v = Visualizer(im[:, :, ::-1],
40
+ scale=0.5,
41
+ instance_mode=ColorMode.SEGMENTATION
42
+ )
43
+ print(len(outputs["instances"])," trees detected.")
44
+ out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
45
+
46
+ return Image.fromarray(out.get_image()[:, :, ::-1])
47
+
48
+ # gradio components
49
+ """
50
+ gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7,
51
+ label='Set confidence threshold % for masks')
52
+ """
53
+ # gradio outputs
54
+ inputs = gr.inputs.Image(type="pil", label="Input Image")
55
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
56
+
57
+ title = "Tree Segmentation"
58
+ description = "An instance segmentation demo for identifying trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"
59
+
60
+ # Create user interface and launch
61
+ gr.Interface(segment_image,
62
+ inputs = inputs,
63
+ outputs = outputs,
64
+ title = title,
65
+ description = description).launch(debug=True)
backend.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ tree-segmentation
3
+ Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees.
4
+ """
5
+ import os
6
+ import cv2
7
+ os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
8
+ from transformers import DetrFeatureExtractor, DetrForSegmentation
9
+ from PIL import Image
10
+ import gradio as gr
11
+ import numpy as np
12
+ import torch
13
+ import torchvision
14
+ import detectron2
15
+
16
+ # import some common detectron2 utilities
17
+ import itertools
18
+ import seaborn as sns
19
+ from detectron2 import model_zoo
20
+ from detectron2.engine import DefaultPredictor
21
+ from detectron2.config import get_cfg
22
+ from detectron2.utils.visualizer import Visualizer
23
+ from detectron2.utils.visualizer import ColorMode
24
+ from detectron2.data import MetadataCatalog, DatasetCatalog
25
+ from detectron2.checkpoint import DetectionCheckpointer
26
+ from detectron2.utils.visualizer import ColorMode
27
+ from detectron2.structures import Instances
28
+
29
+
30
+ # Model for trees
31
+ tree_cfg = get_cfg()
32
+ tree_cfg.merge_from_file("tree_model_weights/tree_cfg.yml")
33
+ tree_cfg.MODEL.DEVICE='cpu'
34
+ tree_cfg.MODEL.WEIGHTS = "tree_model_weights/treev1_best.pth"
35
+ tree_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
36
+ tree_predictor = DefaultPredictor(tree_cfg)
37
+
38
+ # Model for buildings
39
+ building_cfg = get_cfg()
40
+ building_cfg.merge_from_file("building_model_weight/building_poc_cfg.yml")
41
+ building_cfg.MODEL.DEVICE='cpu'
42
+ building_cfg.MODEL.WEIGHTS = "building_model_weight/model_final.pth"
43
+ building_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
44
+ building_predictor = DefaultPredictor(building_cfg)
45
+
46
+ # A function that runs the buildings model on an given image and confidence threshold
47
+ def segment_building(im, confidence_threshold):
48
+ building_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
49
+ im = np.array(im)
50
+ outputs = building_predictor(im)
51
+ building_instances = outputs["instances"].to("cpu")
52
+
53
+ return building_instances
54
+
55
+ # A function that runs the trees model on an given image and confidence threshold
56
+ def segment_tree(im, confidence_threshold):
57
+ tree_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
58
+ im = np.array(im)
59
+ outputs = tree_predictor(im)
60
+ tree_instances = outputs["instances"].to("cpu")
61
+
62
+ return tree_instances
63
+
64
+ # Function to map strings to color mode
65
+ def map_color_mode(color_mode):
66
+ if color_mode == "Black/white":
67
+ return ColorMode.IMAGE_BW
68
+ elif color_mode == "Random":
69
+ return ColorMode.IMAGE
70
+ elif color_mode == "Segmentation":
71
+ return ColorMode.SEGMENTATION
72
+
73
+ def visualize_image(im, mode, tree_threshold, building_threshold, color_mode=ColorMode.SEGMENTATION):
74
+ color_mode = map_color_mode(color_mode)
75
+
76
+ if mode == "Trees":
77
+ instances = segment_tree(im, tree_threshold)
78
+ elif mode == "Buildings":
79
+ instances = segment_building(im, building_threshold)
80
+ elif mode == "Both":
81
+ tree_instances = segment_tree(im, tree_threshold)
82
+ building_instances = segment_building(im, building_threshold)
83
+ instances = Instances.cat([tree_instances, building_instances])
84
+
85
+ visualizer = Visualizer(im[:, :, ::-1],
86
+ scale=0.5,
87
+ instance_mode=color_mode)
88
+
89
+ output_image = visualizer.draw_instance_predictions(instances)
90
+
91
+ return Image.fromarray(output_image.get_image()[:, :, ::-1])
92
+
93
+
{model_weights β†’ building_model_weight}/README.md RENAMED
File without changes
{model_weights β†’ building_model_weight}/buildings_poc_cfg.yml RENAMED
File without changes
building_model_weight/buildingsv1_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:061e1e613db507f4023fb91731cde779240793414d7a6477604ca9473bfa05c2
3
+ size 254201166
building_model_weight/buildingsv1_cfg.yaml ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CUDNN_BENCHMARK: false
2
+ DATALOADER:
3
+ ASPECT_RATIO_GROUPING: true
4
+ FILTER_EMPTY_ANNOTATIONS: true
5
+ NUM_WORKERS: 2
6
+ REPEAT_THRESHOLD: 0.0
7
+ SAMPLER_TRAIN: TrainingSampler
8
+ DATASETS:
9
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
10
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
11
+ PROPOSAL_FILES_TEST: []
12
+ PROPOSAL_FILES_TRAIN: []
13
+ TEST:
14
+ - trees_test
15
+ TRAIN:
16
+ - trees_train
17
+ GLOBAL:
18
+ HACK: 1.0
19
+ INPUT:
20
+ CROP:
21
+ ENABLED: false
22
+ SIZE:
23
+ - 0.9
24
+ - 0.9
25
+ TYPE: relative_range
26
+ FORMAT: BGR
27
+ MASK_FORMAT: polygon
28
+ MAX_SIZE_TEST: 1333
29
+ MAX_SIZE_TRAIN: 1333
30
+ MIN_SIZE_TEST: 800
31
+ MIN_SIZE_TRAIN:
32
+ - 640
33
+ - 672
34
+ - 704
35
+ - 736
36
+ - 768
37
+ - 800
38
+ MIN_SIZE_TRAIN_SAMPLING: choice
39
+ RANDOM_FLIP: horizontal
40
+ MODEL:
41
+ ANCHOR_GENERATOR:
42
+ ANGLES:
43
+ - - -90
44
+ - 0
45
+ - 90
46
+ ASPECT_RATIOS:
47
+ - - 0.5
48
+ - 1.0
49
+ - 2.0
50
+ NAME: DefaultAnchorGenerator
51
+ OFFSET: 0.0
52
+ SIZES:
53
+ - - 32
54
+ - - 64
55
+ - - 128
56
+ - - 256
57
+ - - 512
58
+ BACKBONE:
59
+ FREEZE_AT: 2
60
+ NAME: build_resnet_fpn_backbone
61
+ DEVICE: cuda
62
+ FPN:
63
+ FUSE_TYPE: sum
64
+ IN_FEATURES:
65
+ - res2
66
+ - res3
67
+ - res4
68
+ - res5
69
+ NORM: ''
70
+ OUT_CHANNELS: 256
71
+ KEYPOINT_ON: false
72
+ LOAD_PROPOSALS: false
73
+ MASK_ON: true
74
+ META_ARCHITECTURE: GeneralizedRCNN
75
+ PANOPTIC_FPN:
76
+ COMBINE:
77
+ ENABLED: true
78
+ INSTANCES_CONFIDENCE_THRESH: 0.5
79
+ OVERLAP_THRESH: 0.5
80
+ STUFF_AREA_LIMIT: 4096
81
+ INSTANCE_LOSS_WEIGHT: 1.0
82
+ PIXEL_MEAN:
83
+ - 103.53
84
+ - 116.28
85
+ - 123.675
86
+ PIXEL_STD:
87
+ - 1.0
88
+ - 1.0
89
+ - 1.0
90
+ PROPOSAL_GENERATOR:
91
+ MIN_SIZE: 0
92
+ NAME: RPN
93
+ RESNETS:
94
+ DEFORM_MODULATED: false
95
+ DEFORM_NUM_GROUPS: 1
96
+ DEFORM_ON_PER_STAGE:
97
+ - false
98
+ - false
99
+ - false
100
+ - false
101
+ DEPTH: 101
102
+ NORM: FrozenBN
103
+ NUM_GROUPS: 1
104
+ OUT_FEATURES:
105
+ - res2
106
+ - res3
107
+ - res4
108
+ - res5
109
+ RES2_OUT_CHANNELS: 256
110
+ RES5_DILATION: 1
111
+ STEM_OUT_CHANNELS: 64
112
+ STRIDE_IN_1X1: true
113
+ WIDTH_PER_GROUP: 64
114
+ RETINANET:
115
+ BBOX_REG_LOSS_TYPE: smooth_l1
116
+ BBOX_REG_WEIGHTS: &id002
117
+ - 1.0
118
+ - 1.0
119
+ - 1.0
120
+ - 1.0
121
+ FOCAL_LOSS_ALPHA: 0.25
122
+ FOCAL_LOSS_GAMMA: 2.0
123
+ IN_FEATURES:
124
+ - p3
125
+ - p4
126
+ - p5
127
+ - p6
128
+ - p7
129
+ IOU_LABELS:
130
+ - 0
131
+ - -1
132
+ - 1
133
+ IOU_THRESHOLDS:
134
+ - 0.4
135
+ - 0.5
136
+ NMS_THRESH_TEST: 0.5
137
+ NORM: ''
138
+ NUM_CLASSES: 80
139
+ NUM_CONVS: 4
140
+ PRIOR_PROB: 0.01
141
+ SCORE_THRESH_TEST: 0.05
142
+ SMOOTH_L1_LOSS_BETA: 0.1
143
+ TOPK_CANDIDATES_TEST: 1000
144
+ ROI_BOX_CASCADE_HEAD:
145
+ BBOX_REG_WEIGHTS:
146
+ - &id001
147
+ - 10.0
148
+ - 10.0
149
+ - 5.0
150
+ - 5.0
151
+ - - 20.0
152
+ - 20.0
153
+ - 10.0
154
+ - 10.0
155
+ - - 30.0
156
+ - 30.0
157
+ - 15.0
158
+ - 15.0
159
+ IOUS:
160
+ - 0.5
161
+ - 0.6
162
+ - 0.7
163
+ ROI_BOX_HEAD:
164
+ BBOX_REG_LOSS_TYPE: smooth_l1
165
+ BBOX_REG_LOSS_WEIGHT: 1.0
166
+ BBOX_REG_WEIGHTS: *id001
167
+ CLS_AGNOSTIC_BBOX_REG: false
168
+ CONV_DIM: 256
169
+ FC_DIM: 1024
170
+ FED_LOSS_FREQ_WEIGHT_POWER: 0.5
171
+ FED_LOSS_NUM_CLASSES: 50
172
+ NAME: FastRCNNConvFCHead
173
+ NORM: ''
174
+ NUM_CONV: 0
175
+ NUM_FC: 2
176
+ POOLER_RESOLUTION: 7
177
+ POOLER_SAMPLING_RATIO: 0
178
+ POOLER_TYPE: ROIAlignV2
179
+ SMOOTH_L1_BETA: 0.0
180
+ TRAIN_ON_PRED_BOXES: false
181
+ USE_FED_LOSS: false
182
+ USE_SIGMOID_CE: false
183
+ ROI_HEADS:
184
+ BATCH_SIZE_PER_IMAGE: 512
185
+ IN_FEATURES:
186
+ - p2
187
+ - p3
188
+ - p4
189
+ - p5
190
+ IOU_LABELS:
191
+ - 0
192
+ - 1
193
+ IOU_THRESHOLDS:
194
+ - 0.5
195
+ NAME: StandardROIHeads
196
+ NMS_THRESH_TEST: 0.5
197
+ NUM_CLASSES: 81
198
+ POSITIVE_FRACTION: 0.25
199
+ PROPOSAL_APPEND_GT: true
200
+ SCORE_THRESH_TEST: 0.7
201
+ ROI_KEYPOINT_HEAD:
202
+ CONV_DIMS:
203
+ - 512
204
+ - 512
205
+ - 512
206
+ - 512
207
+ - 512
208
+ - 512
209
+ - 512
210
+ - 512
211
+ LOSS_WEIGHT: 1.0
212
+ MIN_KEYPOINTS_PER_IMAGE: 1
213
+ NAME: KRCNNConvDeconvUpsampleHead
214
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
215
+ NUM_KEYPOINTS: 17
216
+ POOLER_RESOLUTION: 14
217
+ POOLER_SAMPLING_RATIO: 0
218
+ POOLER_TYPE: ROIAlignV2
219
+ ROI_MASK_HEAD:
220
+ CLS_AGNOSTIC_MASK: false
221
+ CONV_DIM: 256
222
+ NAME: MaskRCNNConvUpsampleHead
223
+ NORM: ''
224
+ NUM_CONV: 4
225
+ POOLER_RESOLUTION: 14
226
+ POOLER_SAMPLING_RATIO: 0
227
+ POOLER_TYPE: ROIAlignV2
228
+ RPN:
229
+ BATCH_SIZE_PER_IMAGE: 256
230
+ BBOX_REG_LOSS_TYPE: smooth_l1
231
+ BBOX_REG_LOSS_WEIGHT: 1.0
232
+ BBOX_REG_WEIGHTS: *id002
233
+ BOUNDARY_THRESH: -1
234
+ CONV_DIMS:
235
+ - -1
236
+ HEAD_NAME: StandardRPNHead
237
+ IN_FEATURES:
238
+ - p2
239
+ - p3
240
+ - p4
241
+ - p5
242
+ - p6
243
+ IOU_LABELS:
244
+ - 0
245
+ - -1
246
+ - 1
247
+ IOU_THRESHOLDS:
248
+ - 0.3
249
+ - 0.7
250
+ LOSS_WEIGHT: 1.0
251
+ NMS_THRESH: 0.7
252
+ POSITIVE_FRACTION: 0.5
253
+ POST_NMS_TOPK_TEST: 1000
254
+ POST_NMS_TOPK_TRAIN: 1000
255
+ PRE_NMS_TOPK_TEST: 1000
256
+ PRE_NMS_TOPK_TRAIN: 2000
257
+ SMOOTH_L1_BETA: 0.0
258
+ SEM_SEG_HEAD:
259
+ COMMON_STRIDE: 4
260
+ CONVS_DIM: 128
261
+ IGNORE_VALUE: 255
262
+ IN_FEATURES:
263
+ - p2
264
+ - p3
265
+ - p4
266
+ - p5
267
+ LOSS_WEIGHT: 1.0
268
+ NAME: SemSegFPNHead
269
+ NORM: GN
270
+ NUM_CLASSES: 54
271
+ WEIGHTS: /home/ubuntu/ssd/building_out_0311_10000/model_final.pth
272
+ OUTPUT_DIR: /home/ubuntu/ssd/building_out_0311_10000
273
+ SEED: -1
274
+ SOLVER:
275
+ AMP:
276
+ ENABLED: false
277
+ BASE_LR: 0.00025
278
+ BASE_LR_END: 0.0
279
+ BIAS_LR_FACTOR: 1.0
280
+ CHECKPOINT_PERIOD: 5000
281
+ CLIP_GRADIENTS:
282
+ CLIP_TYPE: value
283
+ CLIP_VALUE: 1.0
284
+ ENABLED: false
285
+ NORM_TYPE: 2.0
286
+ GAMMA: 0.1
287
+ IMS_PER_BATCH: 8
288
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
289
+ MAX_ITER: 10000
290
+ MOMENTUM: 0.9
291
+ NESTEROV: false
292
+ NUM_DECAYS: 3
293
+ REFERENCE_WORLD_SIZE: 0
294
+ RESCALE_INTERVAL: false
295
+ STEPS: []
296
+ WARMUP_FACTOR: 0.001
297
+ WARMUP_ITERS: 1000
298
+ WARMUP_METHOD: linear
299
+ WEIGHT_DECAY: 0.0001
300
+ WEIGHT_DECAY_BIAS: null
301
+ WEIGHT_DECAY_NORM: 0.0
302
+ TEST:
303
+ AUG:
304
+ ENABLED: false
305
+ FLIP: true
306
+ MAX_SIZE: 4000
307
+ MIN_SIZES:
308
+ - 400
309
+ - 500
310
+ - 600
311
+ - 700
312
+ - 800
313
+ - 900
314
+ - 1000
315
+ - 1100
316
+ - 1200
317
+ DETECTIONS_PER_IMAGE: 100
318
+ EVAL_PERIOD: 0
319
+ EXPECTED_RESULTS: []
320
+ KEYPOINT_OKS_SIGMAS: []
321
+ PRECISE_BN:
322
+ ENABLED: false
323
+ NUM_ITER: 200
324
+ VERSION: 2
325
+ VIS_PERIOD: 0
{model_weights β†’ building_model_weight}/model_final.pth RENAMED
File without changes
{model_weights β†’ building_model_weight}/tree_cfg.yml RENAMED
File without changes
{model_weights β†’ building_model_weight}/tree_model.pth RENAMED
File without changes
tree_model_weights/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Model Weights
2
+
3
+ This is where pretrained model weights are stored.
tree_model_weights/buildings_poc_cfg.yml ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CUDNN_BENCHMARK: false
2
+ DATALOADER:
3
+ ASPECT_RATIO_GROUPING: true
4
+ FILTER_EMPTY_ANNOTATIONS: true
5
+ NUM_WORKERS: 2
6
+ REPEAT_THRESHOLD: 0.0
7
+ SAMPLER_TRAIN: TrainingSampler
8
+ DATASETS:
9
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
10
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
11
+ PROPOSAL_FILES_TEST: []
12
+ PROPOSAL_FILES_TRAIN: []
13
+ TEST:
14
+ - urban-small_test
15
+ TRAIN:
16
+ - urban-small_train
17
+ GLOBAL:
18
+ HACK: 1.0
19
+ INPUT:
20
+ CROP:
21
+ ENABLED: false
22
+ SIZE:
23
+ - 0.9
24
+ - 0.9
25
+ TYPE: relative_range
26
+ FORMAT: BGR
27
+ MASK_FORMAT: polygon
28
+ MAX_SIZE_TEST: 1333
29
+ MAX_SIZE_TRAIN: 1333
30
+ MIN_SIZE_TEST: 800
31
+ MIN_SIZE_TRAIN:
32
+ - 640
33
+ - 672
34
+ - 704
35
+ - 736
36
+ - 768
37
+ - 800
38
+ MIN_SIZE_TRAIN_SAMPLING: choice
39
+ RANDOM_FLIP: horizontal
40
+ MODEL:
41
+ ANCHOR_GENERATOR:
42
+ ANGLES:
43
+ - - -90
44
+ - 0
45
+ - 90
46
+ ASPECT_RATIOS:
47
+ - - 0.5
48
+ - 1.0
49
+ - 2.0
50
+ NAME: DefaultAnchorGenerator
51
+ OFFSET: 0.0
52
+ SIZES:
53
+ - - 32
54
+ - - 64
55
+ - - 128
56
+ - - 256
57
+ - - 512
58
+ BACKBONE:
59
+ FREEZE_AT: 2
60
+ NAME: build_resnet_fpn_backbone
61
+ DEVICE: cuda
62
+ FPN:
63
+ FUSE_TYPE: sum
64
+ IN_FEATURES:
65
+ - res2
66
+ - res3
67
+ - res4
68
+ - res5
69
+ NORM: ''
70
+ OUT_CHANNELS: 256
71
+ KEYPOINT_ON: false
72
+ LOAD_PROPOSALS: false
73
+ MASK_ON: true
74
+ META_ARCHITECTURE: GeneralizedRCNN
75
+ PANOPTIC_FPN:
76
+ COMBINE:
77
+ ENABLED: true
78
+ INSTANCES_CONFIDENCE_THRESH: 0.5
79
+ OVERLAP_THRESH: 0.5
80
+ STUFF_AREA_LIMIT: 4096
81
+ INSTANCE_LOSS_WEIGHT: 1.0
82
+ PIXEL_MEAN:
83
+ - 103.53
84
+ - 116.28
85
+ - 123.675
86
+ PIXEL_STD:
87
+ - 1.0
88
+ - 1.0
89
+ - 1.0
90
+ PROPOSAL_GENERATOR:
91
+ MIN_SIZE: 0
92
+ NAME: RPN
93
+ RESNETS:
94
+ DEFORM_MODULATED: false
95
+ DEFORM_NUM_GROUPS: 1
96
+ DEFORM_ON_PER_STAGE:
97
+ - false
98
+ - false
99
+ - false
100
+ - false
101
+ DEPTH: 101
102
+ NORM: FrozenBN
103
+ NUM_GROUPS: 1
104
+ OUT_FEATURES:
105
+ - res2
106
+ - res3
107
+ - res4
108
+ - res5
109
+ RES2_OUT_CHANNELS: 256
110
+ RES5_DILATION: 1
111
+ STEM_OUT_CHANNELS: 64
112
+ STRIDE_IN_1X1: true
113
+ WIDTH_PER_GROUP: 64
114
+ RETINANET:
115
+ BBOX_REG_LOSS_TYPE: smooth_l1
116
+ BBOX_REG_WEIGHTS: &id002
117
+ - 1.0
118
+ - 1.0
119
+ - 1.0
120
+ - 1.0
121
+ FOCAL_LOSS_ALPHA: 0.25
122
+ FOCAL_LOSS_GAMMA: 2.0
123
+ IN_FEATURES:
124
+ - p3
125
+ - p4
126
+ - p5
127
+ - p6
128
+ - p7
129
+ IOU_LABELS:
130
+ - 0
131
+ - -1
132
+ - 1
133
+ IOU_THRESHOLDS:
134
+ - 0.4
135
+ - 0.5
136
+ NMS_THRESH_TEST: 0.5
137
+ NORM: ''
138
+ NUM_CLASSES: 80
139
+ NUM_CONVS: 4
140
+ PRIOR_PROB: 0.01
141
+ SCORE_THRESH_TEST: 0.05
142
+ SMOOTH_L1_LOSS_BETA: 0.1
143
+ TOPK_CANDIDATES_TEST: 1000
144
+ ROI_BOX_CASCADE_HEAD:
145
+ BBOX_REG_WEIGHTS:
146
+ - &id001
147
+ - 10.0
148
+ - 10.0
149
+ - 5.0
150
+ - 5.0
151
+ - - 20.0
152
+ - 20.0
153
+ - 10.0
154
+ - 10.0
155
+ - - 30.0
156
+ - 30.0
157
+ - 15.0
158
+ - 15.0
159
+ IOUS:
160
+ - 0.5
161
+ - 0.6
162
+ - 0.7
163
+ ROI_BOX_HEAD:
164
+ BBOX_REG_LOSS_TYPE: smooth_l1
165
+ BBOX_REG_LOSS_WEIGHT: 1.0
166
+ BBOX_REG_WEIGHTS: *id001
167
+ CLS_AGNOSTIC_BBOX_REG: false
168
+ CONV_DIM: 256
169
+ FC_DIM: 1024
170
+ FED_LOSS_FREQ_WEIGHT_POWER: 0.5
171
+ FED_LOSS_NUM_CLASSES: 50
172
+ NAME: FastRCNNConvFCHead
173
+ NORM: ''
174
+ NUM_CONV: 0
175
+ NUM_FC: 2
176
+ POOLER_RESOLUTION: 7
177
+ POOLER_SAMPLING_RATIO: 0
178
+ POOLER_TYPE: ROIAlignV2
179
+ SMOOTH_L1_BETA: 0.0
180
+ TRAIN_ON_PRED_BOXES: false
181
+ USE_FED_LOSS: false
182
+ USE_SIGMOID_CE: false
183
+ ROI_HEADS:
184
+ BATCH_SIZE_PER_IMAGE: 512
185
+ IN_FEATURES:
186
+ - p2
187
+ - p3
188
+ - p4
189
+ - p5
190
+ IOU_LABELS:
191
+ - 0
192
+ - 1
193
+ IOU_THRESHOLDS:
194
+ - 0.5
195
+ NAME: StandardROIHeads
196
+ NMS_THRESH_TEST: 0.5
197
+ NUM_CLASSES: 8
198
+ POSITIVE_FRACTION: 0.25
199
+ PROPOSAL_APPEND_GT: true
200
+ SCORE_THRESH_TEST: 0.25
201
+ ROI_KEYPOINT_HEAD:
202
+ CONV_DIMS:
203
+ - 512
204
+ - 512
205
+ - 512
206
+ - 512
207
+ - 512
208
+ - 512
209
+ - 512
210
+ - 512
211
+ LOSS_WEIGHT: 1.0
212
+ MIN_KEYPOINTS_PER_IMAGE: 1
213
+ NAME: KRCNNConvDeconvUpsampleHead
214
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
215
+ NUM_KEYPOINTS: 17
216
+ POOLER_RESOLUTION: 14
217
+ POOLER_SAMPLING_RATIO: 0
218
+ POOLER_TYPE: ROIAlignV2
219
+ ROI_MASK_HEAD:
220
+ CLS_AGNOSTIC_MASK: false
221
+ CONV_DIM: 256
222
+ NAME: MaskRCNNConvUpsampleHead
223
+ NORM: ''
224
+ NUM_CONV: 4
225
+ POOLER_RESOLUTION: 14
226
+ POOLER_SAMPLING_RATIO: 0
227
+ POOLER_TYPE: ROIAlignV2
228
+ RPN:
229
+ BATCH_SIZE_PER_IMAGE: 256
230
+ BBOX_REG_LOSS_TYPE: smooth_l1
231
+ BBOX_REG_LOSS_WEIGHT: 1.0
232
+ BBOX_REG_WEIGHTS: *id002
233
+ BOUNDARY_THRESH: -1
234
+ CONV_DIMS:
235
+ - -1
236
+ HEAD_NAME: StandardRPNHead
237
+ IN_FEATURES:
238
+ - p2
239
+ - p3
240
+ - p4
241
+ - p5
242
+ - p6
243
+ IOU_LABELS:
244
+ - 0
245
+ - -1
246
+ - 1
247
+ IOU_THRESHOLDS:
248
+ - 0.3
249
+ - 0.7
250
+ LOSS_WEIGHT: 1.0
251
+ NMS_THRESH: 0.7
252
+ POSITIVE_FRACTION: 0.5
253
+ POST_NMS_TOPK_TEST: 1000
254
+ POST_NMS_TOPK_TRAIN: 1000
255
+ PRE_NMS_TOPK_TEST: 1000
256
+ PRE_NMS_TOPK_TRAIN: 2000
257
+ SMOOTH_L1_BETA: 0.0
258
+ SEM_SEG_HEAD:
259
+ COMMON_STRIDE: 4
260
+ CONVS_DIM: 128
261
+ IGNORE_VALUE: 255
262
+ IN_FEATURES:
263
+ - p2
264
+ - p3
265
+ - p4
266
+ - p5
267
+ LOSS_WEIGHT: 1.0
268
+ NAME: SemSegFPNHead
269
+ NORM: GN
270
+ NUM_CLASSES: 54
271
+ WEIGHTS: ./output/model_final.pth
272
+ OUTPUT_DIR: ./output
273
+ SEED: -1
274
+ SOLVER:
275
+ AMP:
276
+ ENABLED: false
277
+ BASE_LR: 0.00025
278
+ BASE_LR_END: 0.0
279
+ BIAS_LR_FACTOR: 1.0
280
+ CHECKPOINT_PERIOD: 5000
281
+ CLIP_GRADIENTS:
282
+ CLIP_TYPE: value
283
+ CLIP_VALUE: 1.0
284
+ ENABLED: false
285
+ NORM_TYPE: 2.0
286
+ GAMMA: 0.1
287
+ IMS_PER_BATCH: 2
288
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
289
+ MAX_ITER: 3000
290
+ MOMENTUM: 0.9
291
+ NESTEROV: false
292
+ NUM_DECAYS: 3
293
+ REFERENCE_WORLD_SIZE: 0
294
+ RESCALE_INTERVAL: false
295
+ STEPS: []
296
+ WARMUP_FACTOR: 0.001
297
+ WARMUP_ITERS: 1000
298
+ WARMUP_METHOD: linear
299
+ WEIGHT_DECAY: 0.0001
300
+ WEIGHT_DECAY_BIAS: null
301
+ WEIGHT_DECAY_NORM: 0.0
302
+ TEST:
303
+ AUG:
304
+ ENABLED: false
305
+ FLIP: true
306
+ MAX_SIZE: 4000
307
+ MIN_SIZES:
308
+ - 400
309
+ - 500
310
+ - 600
311
+ - 700
312
+ - 800
313
+ - 900
314
+ - 1000
315
+ - 1100
316
+ - 1200
317
+ DETECTIONS_PER_IMAGE: 100
318
+ EVAL_PERIOD: 0
319
+ EXPECTED_RESULTS: []
320
+ KEYPOINT_OKS_SIGMAS: []
321
+ PRECISE_BN:
322
+ ENABLED: false
323
+ NUM_ITER: 200
324
+ VERSION: 2
325
+ VIS_PERIOD: 0
tree_model_weights/model_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42b87453ef364938795263c24d9be8cbc4cd7e01c3390690a6c4cfb71a6ce23e
3
+ size 503364111
tree_model_weights/tree_cfg.yml ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CUDNN_BENCHMARK: false
2
+ DATALOADER:
3
+ ASPECT_RATIO_GROUPING: true
4
+ FILTER_EMPTY_ANNOTATIONS: true
5
+ NUM_WORKERS: 2
6
+ REPEAT_THRESHOLD: 0.0
7
+ SAMPLER_TRAIN: TrainingSampler
8
+ DATASETS:
9
+ PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
10
+ PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
11
+ PROPOSAL_FILES_TEST: []
12
+ PROPOSAL_FILES_TRAIN: []
13
+ TEST:
14
+ - urban-trees-fdokv_test
15
+ TRAIN:
16
+ - urban-trees-fdokv_train
17
+ GLOBAL:
18
+ HACK: 1.0
19
+ INPUT:
20
+ CROP:
21
+ ENABLED: false
22
+ SIZE:
23
+ - 0.9
24
+ - 0.9
25
+ TYPE: relative_range
26
+ FORMAT: BGR
27
+ MASK_FORMAT: polygon
28
+ MAX_SIZE_TEST: 1333
29
+ MAX_SIZE_TRAIN: 1333
30
+ MIN_SIZE_TEST: 800
31
+ MIN_SIZE_TRAIN:
32
+ - 640
33
+ - 672
34
+ - 704
35
+ - 736
36
+ - 768
37
+ - 800
38
+ MIN_SIZE_TRAIN_SAMPLING: choice
39
+ RANDOM_FLIP: horizontal
40
+ MODEL:
41
+ ANCHOR_GENERATOR:
42
+ ANGLES:
43
+ - - -90
44
+ - 0
45
+ - 90
46
+ ASPECT_RATIOS:
47
+ - - 0.5
48
+ - 1.0
49
+ - 2.0
50
+ NAME: DefaultAnchorGenerator
51
+ OFFSET: 0.0
52
+ SIZES:
53
+ - - 32
54
+ - - 64
55
+ - - 128
56
+ - - 256
57
+ - - 512
58
+ BACKBONE:
59
+ FREEZE_AT: 2
60
+ NAME: build_resnet_fpn_backbone
61
+ DEVICE: cuda
62
+ FPN:
63
+ FUSE_TYPE: sum
64
+ IN_FEATURES:
65
+ - res2
66
+ - res3
67
+ - res4
68
+ - res5
69
+ NORM: ''
70
+ OUT_CHANNELS: 256
71
+ KEYPOINT_ON: false
72
+ LOAD_PROPOSALS: false
73
+ MASK_ON: true
74
+ META_ARCHITECTURE: GeneralizedRCNN
75
+ PANOPTIC_FPN:
76
+ COMBINE:
77
+ ENABLED: true
78
+ INSTANCES_CONFIDENCE_THRESH: 0.5
79
+ OVERLAP_THRESH: 0.5
80
+ STUFF_AREA_LIMIT: 4096
81
+ INSTANCE_LOSS_WEIGHT: 1.0
82
+ PIXEL_MEAN:
83
+ - 103.53
84
+ - 116.28
85
+ - 123.675
86
+ PIXEL_STD:
87
+ - 1.0
88
+ - 1.0
89
+ - 1.0
90
+ PROPOSAL_GENERATOR:
91
+ MIN_SIZE: 0
92
+ NAME: RPN
93
+ RESNETS:
94
+ DEFORM_MODULATED: false
95
+ DEFORM_NUM_GROUPS: 1
96
+ DEFORM_ON_PER_STAGE:
97
+ - false
98
+ - false
99
+ - false
100
+ - false
101
+ DEPTH: 101
102
+ NORM: FrozenBN
103
+ NUM_GROUPS: 1
104
+ OUT_FEATURES:
105
+ - res2
106
+ - res3
107
+ - res4
108
+ - res5
109
+ RES2_OUT_CHANNELS: 256
110
+ RES5_DILATION: 1
111
+ STEM_OUT_CHANNELS: 64
112
+ STRIDE_IN_1X1: true
113
+ WIDTH_PER_GROUP: 64
114
+ RETINANET:
115
+ BBOX_REG_LOSS_TYPE: smooth_l1
116
+ BBOX_REG_WEIGHTS: &id002
117
+ - 1.0
118
+ - 1.0
119
+ - 1.0
120
+ - 1.0
121
+ FOCAL_LOSS_ALPHA: 0.25
122
+ FOCAL_LOSS_GAMMA: 2.0
123
+ IN_FEATURES:
124
+ - p3
125
+ - p4
126
+ - p5
127
+ - p6
128
+ - p7
129
+ IOU_LABELS:
130
+ - 0
131
+ - -1
132
+ - 1
133
+ IOU_THRESHOLDS:
134
+ - 0.4
135
+ - 0.5
136
+ NMS_THRESH_TEST: 0.5
137
+ NORM: ''
138
+ NUM_CLASSES: 80
139
+ NUM_CONVS: 4
140
+ PRIOR_PROB: 0.01
141
+ SCORE_THRESH_TEST: 0.05
142
+ SMOOTH_L1_LOSS_BETA: 0.1
143
+ TOPK_CANDIDATES_TEST: 1000
144
+ ROI_BOX_CASCADE_HEAD:
145
+ BBOX_REG_WEIGHTS:
146
+ - &id001
147
+ - 10.0
148
+ - 10.0
149
+ - 5.0
150
+ - 5.0
151
+ - - 20.0
152
+ - 20.0
153
+ - 10.0
154
+ - 10.0
155
+ - - 30.0
156
+ - 30.0
157
+ - 15.0
158
+ - 15.0
159
+ IOUS:
160
+ - 0.5
161
+ - 0.6
162
+ - 0.7
163
+ ROI_BOX_HEAD:
164
+ BBOX_REG_LOSS_TYPE: smooth_l1
165
+ BBOX_REG_LOSS_WEIGHT: 1.0
166
+ BBOX_REG_WEIGHTS: *id001
167
+ CLS_AGNOSTIC_BBOX_REG: false
168
+ CONV_DIM: 256
169
+ FC_DIM: 1024
170
+ FED_LOSS_FREQ_WEIGHT_POWER: 0.5
171
+ FED_LOSS_NUM_CLASSES: 50
172
+ NAME: FastRCNNConvFCHead
173
+ NORM: ''
174
+ NUM_CONV: 0
175
+ NUM_FC: 2
176
+ POOLER_RESOLUTION: 7
177
+ POOLER_SAMPLING_RATIO: 0
178
+ POOLER_TYPE: ROIAlignV2
179
+ SMOOTH_L1_BETA: 0.0
180
+ TRAIN_ON_PRED_BOXES: false
181
+ USE_FED_LOSS: false
182
+ USE_SIGMOID_CE: false
183
+ ROI_HEADS:
184
+ BATCH_SIZE_PER_IMAGE: 512
185
+ IN_FEATURES:
186
+ - p2
187
+ - p3
188
+ - p4
189
+ - p5
190
+ IOU_LABELS:
191
+ - 0
192
+ - 1
193
+ IOU_THRESHOLDS:
194
+ - 0.5
195
+ NAME: StandardROIHeads
196
+ NMS_THRESH_TEST: 0.5
197
+ NUM_CLASSES: 2
198
+ POSITIVE_FRACTION: 0.25
199
+ PROPOSAL_APPEND_GT: true
200
+ SCORE_THRESH_TEST: 0.25
201
+ ROI_KEYPOINT_HEAD:
202
+ CONV_DIMS:
203
+ - 512
204
+ - 512
205
+ - 512
206
+ - 512
207
+ - 512
208
+ - 512
209
+ - 512
210
+ - 512
211
+ LOSS_WEIGHT: 1.0
212
+ MIN_KEYPOINTS_PER_IMAGE: 1
213
+ NAME: KRCNNConvDeconvUpsampleHead
214
+ NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
215
+ NUM_KEYPOINTS: 17
216
+ POOLER_RESOLUTION: 14
217
+ POOLER_SAMPLING_RATIO: 0
218
+ POOLER_TYPE: ROIAlignV2
219
+ ROI_MASK_HEAD:
220
+ CLS_AGNOSTIC_MASK: false
221
+ CONV_DIM: 256
222
+ NAME: MaskRCNNConvUpsampleHead
223
+ NORM: ''
224
+ NUM_CONV: 4
225
+ POOLER_RESOLUTION: 14
226
+ POOLER_SAMPLING_RATIO: 0
227
+ POOLER_TYPE: ROIAlignV2
228
+ RPN:
229
+ BATCH_SIZE_PER_IMAGE: 256
230
+ BBOX_REG_LOSS_TYPE: smooth_l1
231
+ BBOX_REG_LOSS_WEIGHT: 1.0
232
+ BBOX_REG_WEIGHTS: *id002
233
+ BOUNDARY_THRESH: -1
234
+ CONV_DIMS:
235
+ - -1
236
+ HEAD_NAME: StandardRPNHead
237
+ IN_FEATURES:
238
+ - p2
239
+ - p3
240
+ - p4
241
+ - p5
242
+ - p6
243
+ IOU_LABELS:
244
+ - 0
245
+ - -1
246
+ - 1
247
+ IOU_THRESHOLDS:
248
+ - 0.3
249
+ - 0.7
250
+ LOSS_WEIGHT: 1.0
251
+ NMS_THRESH: 0.7
252
+ POSITIVE_FRACTION: 0.5
253
+ POST_NMS_TOPK_TEST: 1000
254
+ POST_NMS_TOPK_TRAIN: 1000
255
+ PRE_NMS_TOPK_TEST: 1000
256
+ PRE_NMS_TOPK_TRAIN: 2000
257
+ SMOOTH_L1_BETA: 0.0
258
+ SEM_SEG_HEAD:
259
+ COMMON_STRIDE: 4
260
+ CONVS_DIM: 128
261
+ IGNORE_VALUE: 255
262
+ IN_FEATURES:
263
+ - p2
264
+ - p3
265
+ - p4
266
+ - p5
267
+ LOSS_WEIGHT: 1.0
268
+ NAME: SemSegFPNHead
269
+ NORM: GN
270
+ NUM_CLASSES: 54
271
+ WEIGHTS: ./output/model_final.pth
272
+ OUTPUT_DIR: ./output
273
+ SEED: -1
274
+ SOLVER:
275
+ AMP:
276
+ ENABLED: false
277
+ BASE_LR: 0.00025
278
+ BASE_LR_END: 0.0
279
+ BIAS_LR_FACTOR: 1.0
280
+ CHECKPOINT_PERIOD: 5000
281
+ CLIP_GRADIENTS:
282
+ CLIP_TYPE: value
283
+ CLIP_VALUE: 1.0
284
+ ENABLED: false
285
+ NORM_TYPE: 2.0
286
+ GAMMA: 0.1
287
+ IMS_PER_BATCH: 2
288
+ LR_SCHEDULER_NAME: WarmupMultiStepLR
289
+ MAX_ITER: 3000
290
+ MOMENTUM: 0.9
291
+ NESTEROV: false
292
+ NUM_DECAYS: 3
293
+ REFERENCE_WORLD_SIZE: 0
294
+ RESCALE_INTERVAL: false
295
+ STEPS: []
296
+ WARMUP_FACTOR: 0.001
297
+ WARMUP_ITERS: 1000
298
+ WARMUP_METHOD: linear
299
+ WEIGHT_DECAY: 0.0001
300
+ WEIGHT_DECAY_BIAS: null
301
+ WEIGHT_DECAY_NORM: 0.0
302
+ TEST:
303
+ AUG:
304
+ ENABLED: false
305
+ FLIP: true
306
+ MAX_SIZE: 4000
307
+ MIN_SIZES:
308
+ - 400
309
+ - 500
310
+ - 600
311
+ - 700
312
+ - 800
313
+ - 900
314
+ - 1000
315
+ - 1100
316
+ - 1200
317
+ DETECTIONS_PER_IMAGE: 100
318
+ EVAL_PERIOD: 0
319
+ EXPECTED_RESULTS: []
320
+ KEYPOINT_OKS_SIGMAS: []
321
+ PRECISE_BN:
322
+ ENABLED: false
323
+ NUM_ITER: 200
324
+ VERSION: 2
325
+ VIS_PERIOD: 0
tree_model_weights/tree_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:552742a48b35b5d30104379da031963eb696758794d6c23c36b24dd35c32cc8b
3
+ size 503106240
{model_weights β†’ tree_model_weights}/treev1_best.pth RENAMED
File without changes
{model_weights β†’ tree_model_weights}/treev1_cfg.yaml RENAMED
File without changes