Spaces:
Runtime error
Runtime error
""" | |
tree-segmentation | |
Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees. | |
""" | |
import os | |
import cv2 | |
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
from transformers import DetrFeatureExtractor, DetrForSegmentation | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torchvision | |
import detectron2 | |
# import some common detectron2 utilities | |
import itertools | |
import seaborn as sns | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.utils.visualizer import ColorMode | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.utils.visualizer import ColorMode | |
from detectron2.structures import Instances | |
# Model for trees | |
tree_cfg = get_cfg() | |
tree_cfg.merge_from_file("tree_model_weights/tree_cfg.yml") | |
tree_cfg.MODEL.DEVICE='cpu' | |
tree_cfg.MODEL.WEIGHTS = "tree_model_weights/treev1_best.pth" | |
tree_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
tree_predictor = DefaultPredictor(tree_cfg) | |
# Model for buildings | |
building_cfg = get_cfg() | |
building_cfg.merge_from_file("building_model_weight/buildings_poc_cfg.yml") | |
building_cfg.MODEL.DEVICE='cpu' | |
building_cfg.MODEL.WEIGHTS = "building_model_weight/model_final.pth" | |
building_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8 | |
building_predictor = DefaultPredictor(building_cfg) | |
# A function that runs the buildings model on an given image and confidence threshold | |
def segment_building(im, confidence_threshold): | |
building_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold | |
outputs = building_predictor(im) | |
building_instances = outputs["instances"].to("cpu") | |
return building_instances | |
# A function that runs the trees model on an given image and confidence threshold | |
def segment_tree(im, confidence_threshold): | |
tree_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold | |
outputs = tree_predictor(im) | |
tree_instances = outputs["instances"].to("cpu") | |
return tree_instances | |
# Function to map strings to color mode | |
def map_color_mode(color_mode): | |
if color_mode == "Black/white": | |
return ColorMode.IMAGE_BW | |
elif color_mode == "Random": | |
return ColorMode.IMAGE | |
elif color_mode == "Segmentation" or color_mode == None: | |
return ColorMode.SEGMENTATION | |
def visualize_image(im, mode, tree_threshold:float, building_threshold:float, color_mode): | |
im = np.array(im) | |
color_mode = map_color_mode(color_mode) | |
if mode == "Trees": | |
instances = segment_tree(im, tree_threshold) | |
elif mode == "Buildings": | |
instances = segment_building(im, building_threshold) | |
elif mode == "Both" or mode == None: | |
tree_instances = segment_tree(im, tree_threshold) | |
building_instances = segment_building(im, building_threshold) | |
instances = Instances.cat([tree_instances, building_instances]) | |
metadata = MetadataCatalog.get("urban-trees-fdokv_train") | |
print("metadata", type(metadata), metadata) | |
print('metadata.get("thing_classes")', type(metadata.get("thing_classes")), metadata.get("thing_classes")) | |
visualizer = Visualizer(im[:, :, ::-1], | |
metadata=metadata, | |
scale=0.5, | |
instance_mode=color_mode) | |
dataset_names = MetadataCatalog.list() | |
print(dataset_names) | |
metadata = MetadataCatalog.get("urban-small_train") | |
category_names = metadata.get("thing_classes") | |
print(category_names) | |
# visualizer = Visualizer(im[:, :, ::-1], | |
# metadata=metadata, | |
# scale=0.5, | |
# instance_mode=color_mode) | |
# # in the visualizer, add category label names to detected instances | |
# for instance in instances: | |
# label = category_names[instance["category_id"]] | |
# visualizer.draw_text(label, instance["bbox"][:2]) | |
output_image = visualizer.draw_instance_predictions(instances) | |
return Image.fromarray(output_image.get_image()[:, :, ::-1]) | |