xinwei89
test datasets
008d1df
raw
history blame
4.2 kB
"""
tree-segmentation
Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees.
"""
import os
import cv2
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision
import detectron2
# import some common detectron2 utilities
import itertools
import seaborn as sns
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.utils.visualizer import ColorMode
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.utils.visualizer import ColorMode
from detectron2.structures import Instances
# Model for trees
tree_cfg = get_cfg()
tree_cfg.merge_from_file("tree_model_weights/tree_cfg.yml")
tree_cfg.MODEL.DEVICE='cpu'
tree_cfg.MODEL.WEIGHTS = "tree_model_weights/treev1_best.pth"
tree_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
tree_predictor = DefaultPredictor(tree_cfg)
# Model for buildings
building_cfg = get_cfg()
building_cfg.merge_from_file("building_model_weight/buildings_poc_cfg.yml")
building_cfg.MODEL.DEVICE='cpu'
building_cfg.MODEL.WEIGHTS = "building_model_weight/model_final.pth"
building_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
building_predictor = DefaultPredictor(building_cfg)
# A function that runs the buildings model on an given image and confidence threshold
def segment_building(im, confidence_threshold):
building_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
outputs = building_predictor(im)
building_instances = outputs["instances"].to("cpu")
return building_instances
# A function that runs the trees model on an given image and confidence threshold
def segment_tree(im, confidence_threshold):
tree_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
outputs = tree_predictor(im)
tree_instances = outputs["instances"].to("cpu")
return tree_instances
# Function to map strings to color mode
def map_color_mode(color_mode):
if color_mode == "Black/white":
return ColorMode.IMAGE_BW
elif color_mode == "Random":
return ColorMode.IMAGE
elif color_mode == "Segmentation" or color_mode == None:
return ColorMode.SEGMENTATION
def visualize_image(im, mode, tree_threshold:float, building_threshold:float, color_mode):
im = np.array(im)
color_mode = map_color_mode(color_mode)
if mode == "Trees":
instances = segment_tree(im, tree_threshold)
elif mode == "Buildings":
instances = segment_building(im, building_threshold)
elif mode == "Both" or mode == None:
tree_instances = segment_tree(im, tree_threshold)
building_instances = segment_building(im, building_threshold)
instances = Instances.cat([tree_instances, building_instances])
metadata = MetadataCatalog.get("urban-trees-fdokv_train")
print("metadata", type(metadata), metadata)
print('metadata.get("thing_classes")', type(metadata.get("thing_classes")), metadata.get("thing_classes"))
visualizer = Visualizer(im[:, :, ::-1],
metadata=metadata,
scale=0.5,
instance_mode=color_mode)
dataset_names = MetadataCatalog.list()
print(dataset_names)
metadata = MetadataCatalog.get("urban-small_train")
category_names = metadata.get("thing_classes")
print(category_names)
# visualizer = Visualizer(im[:, :, ::-1],
# metadata=metadata,
# scale=0.5,
# instance_mode=color_mode)
# # in the visualizer, add category label names to detected instances
# for instance in instances:
# label = category_names[instance["category_id"]]
# visualizer.draw_text(label, instance["bbox"][:2])
output_image = visualizer.draw_instance_predictions(instances)
return Image.fromarray(output_image.get_image()[:, :, ::-1])