Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import os | |
import pickle | |
import sys | |
sys.path.insert(0, 'stylegan_xl') | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
ORIGINAL_REPO_URL = 'https://github.com/autonomousvision/stylegan_xl' | |
TITLE = 'autonomousvision/stylegan_xl' | |
DESCRIPTION = f'''This is a demo for {ORIGINAL_REPO_URL}. | |
For class-conditional models, you can specify the class index. | |
Index-to-label dictionaries for ImageNet and CIFAR-10 can be found [here](https://raw.githubusercontent.com/autonomousvision/stylegan_xl/main/misc/imagenet_idx2labels.txt) and [here](https://www.cs.toronto.edu/~kriz/cifar.html), respectively. | |
''' | |
ARTICLE = None | |
TOKEN = os.environ['TOKEN'] | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray: | |
mat = np.eye(3) | |
sin = np.sin(angle / 360 * np.pi * 2) | |
cos = np.cos(angle / 360 * np.pi * 2) | |
mat[0][0] = cos | |
mat[0][1] = sin | |
mat[0][2] = translate[0] | |
mat[1][0] = -sin | |
mat[1][1] = cos | |
mat[1][2] = translate[1] | |
return mat | |
def generate_z(seed: int, device: torch.device) -> torch.Tensor: | |
return torch.from_numpy(np.random.RandomState(seed).randn(1, | |
64)).to(device) | |
def generate_image(model_name: str, class_index: int, seed: int, | |
truncation_psi: float, tx: float, ty: float, angle: float, | |
model_dict: dict[str, nn.Module], | |
device: torch.device) -> np.ndarray: | |
model = model_dict[model_name] | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
z = generate_z(seed, device) | |
label = torch.zeros([1, model.c_dim], device=device) | |
class_index = round(class_index) | |
class_index = min(max(0, class_index), model.c_dim - 1) | |
class_index = torch.tensor(class_index, dtype=torch.long) | |
if class_index >= 0: | |
label[:, class_index] = 1 | |
mat = make_transform((tx, ty), angle) | |
mat = np.linalg.inv(mat) | |
model.synthesis.input.transform.copy_(torch.from_numpy(mat)) | |
out = model(z, label, truncation_psi=truncation_psi) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return out[0].cpu().numpy() | |
def load_model(model_name: str, device: torch.device) -> nn.Module: | |
path = hf_hub_download('hysts/StyleGAN-XL', | |
f'models/{model_name}.pkl', | |
use_auth_token=TOKEN) | |
with open(path, 'rb') as f: | |
model = pickle.load(f)['G_ema'] | |
model.eval() | |
model.to(device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, 64)).to(device) | |
label = torch.zeros([1, model.c_dim], device=device) | |
model(z, label) | |
return model | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
device = torch.device(args.device) | |
model_names = [ | |
'imagenet16', | |
'imagenet32', | |
'imagenet64', | |
'imagenet128', | |
'cifar10', | |
'ffhq256', | |
'pokemon256', | |
] | |
model_dict = {name: load_model(name, device) for name in model_names} | |
func = functools.partial(generate_image, | |
model_dict=model_dict, | |
device=device) | |
func = functools.update_wrapper(func, generate_image) | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Radio( | |
model_names, | |
type='value', | |
default='imagenet128', | |
label='Model', | |
), | |
gr.inputs.Number(default=284, label='Class index'), | |
gr.inputs.Number(default=0, label='Seed'), | |
gr.inputs.Slider( | |
0, 2, step=0.05, default=0.7, label='Truncation psi'), | |
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'), | |
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'), | |
gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'), | |
], | |
gr.outputs.Image(type='numpy', label='Output'), | |
theme=args.theme, | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |