|
import cv2 |
|
import torch |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
|
|
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg') |
|
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg') |
|
|
|
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") |
|
|
|
use_large_model = True |
|
|
|
if use_large_model: |
|
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS") |
|
else: |
|
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") |
|
|
|
device = "cpu" |
|
midas.to(device) |
|
|
|
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") |
|
|
|
if use_large_model: |
|
transform = midas_transforms.default_transform |
|
else: |
|
transform = midas_transforms.small_transform |
|
|
|
|
|
def depth(img): |
|
cv_image = np.array(img) |
|
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB) |
|
|
|
input_batch = transform(img).to(device) |
|
with torch.no_grad(): |
|
prediction = midas(input_batch) |
|
|
|
prediction = torch.nn.functional.interpolate( |
|
prediction.unsqueeze(1), |
|
size=img.shape[:2], |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
|
|
output = prediction.cpu().numpy() |
|
formatted = (output * 255 / np.max(output)).astype('uint8') |
|
img = Image.fromarray(formatted) |
|
return img |
|
|
|
|
|
inputs = gr.inputs.Image(type='pil', label="Original Image") |
|
outputs = gr.outputs.Image(type="pil",label="Output Image") |
|
|
|
title = "MiDaS" |
|
description = "Gradio demo for MiDaS v2.1 which takes in a single image for computing relative depth. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.01341v3'>Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>" |
|
|
|
examples = [ |
|
["turtle.jpg"], |
|
["lions.jpg"] |
|
] |
|
|
|
gr.Interface(depth, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(enable_queue=True,cache_examples=True) |