RuudVelo commited on
Commit
68d6aa3
·
1 Parent(s): 1fa4c6b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -17
app.py CHANGED
@@ -33,27 +33,44 @@ tokenizer = BertTokenizer.from_pretrained("RuudVelo/dutch_news_clf_bert_finetune
33
  # Title
34
  st.title("Dutch news article classification")
35
 
36
- text = st.text_area('Please type/copy/paste text of the Dutch article')
37
 
38
- if text:
39
- encoding = tokenizer(text, return_tensors="pt")
40
- outputs = model(**encoding)
41
- predictions = outputs.logits.argmax(-1)
42
- probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
43
 
44
- fig = plt.figure()
45
- ax = fig.add_axes([0,0,1,1])
46
- labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis',
47
- 'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech']
48
- probs_plot = probabilities[0].cpu().detach().numpy()
49
 
50
- ax.barh(labels_plot,probs_plot )
51
- st.pyplot(fig)
52
- st.json(predictions)
53
- #plt.show()
54
- #out = pipe(text)
55
- #st.json(predictions)
 
 
 
 
 
 
 
 
 
 
 
 
56
 
 
 
 
 
 
57
  #encoding = tokenizer(text, return_tensors="pt")
58
  #import numpy as np
59
 
 
33
  # Title
34
  st.title("Dutch news article classification")
35
 
36
+ #text = st.text_area('Please type/copy/paste text of the Dutch article')
37
 
38
+ #if text:
39
+ # encoding = tokenizer(text, return_tensors="pt")
40
+ # outputs = model(**encoding)
41
+ # predictions = outputs.logits.argmax(-1)
42
+ # probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
43
 
44
+ ## fig = plt.figure()
45
+ # ax = fig.add_axes([0,0,1,1])
46
+ # labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis',
47
+ # 'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech']
48
+ # probs_plot = probabilities[0].cpu().detach().numpy()
49
 
50
+ # ax.barh(labels_plot,probs_plot )
51
+ # st.pyplot(fig)
52
+
53
+
54
+ input = st.text_input('Context')
55
+
56
+ if st.button('Submit'):
57
+ with st.spinner('Generating a response...'):
58
+ encoding = tokenizer(text, return_tensors="pt")
59
+ outputs = model(**encoding)
60
+ predictions = outputs.logits.argmax(-1)
61
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
62
+
63
+ fig = plt.figure()
64
+ ax = fig.add_axes([0,0,1,1])
65
+ labels_plot = ['Binnenland', 'Buitenland' ,'Cultuur & Media' ,'Economie' ,'Koningshuis',
66
+ 'Opmerkelijk' ,'Politiek', 'Regionaal nieuws', 'Tech']
67
+ probs_plot = probabilities[0].cpu().detach().numpy()
68
 
69
+ ax.barh(labels_plot,probs_plot )
70
+ st.pyplot(fig)
71
+ # output = genQuestion(option, input)
72
+ # print(output)
73
+ # st.write(output)
74
  #encoding = tokenizer(text, return_tensors="pt")
75
  #import numpy as np
76