Spaces:
Build error
Build error
File size: 11,922 Bytes
222619b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from utils.cwt import get_lf0_cwt
import torch.optim
import torch.utils.data
import importlib
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse
import numpy as np
from tasks.base_task import BaseDataset
import torch
import torch.optim
import torch.utils.data
import utils
import torch.distributions
from utils.hparams import hparams
from utils.pitch_utils import norm_interp_f0
from resemblyzer import VoiceEncoder
import json
from data_gen.tts.data_gen_utils import build_phone_encoder
class BaseTTSDataset(BaseDataset):
def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None):
super().__init__(shuffle)
self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir
self.prefix = prefix
self.hparams = hparams
self.indexed_ds = None
self.ext_mel2ph = None
def load_size():
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
if prefix == 'test':
if test_items is not None:
self.indexed_ds, self.sizes = test_items, test_sizes
else:
load_size()
if hparams['num_test_samples'] > 0:
self.avail_idxs = [x for x in range(hparams['num_test_samples']) \
if x < len(self.sizes)]
if len(hparams['test_ids']) > 0:
self.avail_idxs = hparams['test_ids'] + self.avail_idxs
else:
self.avail_idxs = list(range(len(self.sizes)))
else:
load_size()
self.avail_idxs = list(range(len(self.sizes)))
if hparams['min_frames'] > 0:
self.avail_idxs = [
x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']]
self.sizes = [self.sizes[i] for i in self.avail_idxs]
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
hparams = self.hparams
item = self._get_item(index)
assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index])
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple']
spec = spec[:max_frames]
phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']])
sample = {
"id": index,
"item_name": item['item_name'],
"text": item['txt'],
"txt_token": phone,
"mel": spec,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = item['spk_id']
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
hparams = self.hparams
id = torch.LongTensor([s['id'] for s in samples])
item_names = [s['item_name'] for s in samples]
text = [s['text'] for s in samples]
txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'id': id,
'item_name': item_names,
'nsamples': len(samples),
'text': text,
'txt_tokens': txt_tokens,
'txt_lengths': txt_lengths,
'mels': mels,
'mel_lengths': mel_lengths,
}
if hparams['use_spk_embed']:
spk_embed = torch.stack([s['spk_embed'] for s in samples])
batch['spk_embed'] = spk_embed
if hparams['use_spk_id']:
spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
batch['spk_ids'] = spk_ids
return batch
class FastSpeechDataset(BaseTTSDataset):
def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None):
super().__init__(prefix, shuffle, test_items, test_sizes, data_dir)
self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None)
if prefix == 'test' and hparams['test_input_dir'] != '':
self.data_dir = hparams['test_input_dir']
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
self.indexed_ds = sorted(self.indexed_ds, key=lambda item: item['item_name'])
items = {}
for i in range(len(self.indexed_ds)):
speaker = self.indexed_ds[i]['item_name'].split('_')[0]
if speaker not in items.keys():
items[speaker] = [i]
else:
items[speaker].append(i)
sort_item = sorted(items.values(), key=lambda item_pre_speaker: len(item_pre_speaker), reverse=True)
self.avail_idxs = [n for a in sort_item for n in a][:hparams['num_test_samples']]
self.indexed_ds, self.sizes = self.load_test_inputs()
self.avail_idxs = [i for i in range(hparams['num_test_samples'])]
if hparams['pitch_type'] == 'cwt':
_, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10))
def __getitem__(self, index):
sample = super(FastSpeechDataset, self).__getitem__(index)
item = self._get_item(index)
hparams = self.hparams
max_frames = hparams['max_frames']
spec = sample['mel']
T = spec.shape[0]
phone = sample['txt_token']
sample['energy'] = (spec.exp() ** 2).sum(-1).sqrt()
sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None
if hparams['use_pitch_embed']:
assert 'f0' in item
if hparams.get('normalize_pitch', False):
f0 = item["f0"]
if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0:
f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \
hparams['f0_mean']
f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500)
pitch = f0_to_coarse(f0)
pitch = torch.LongTensor(pitch[:max_frames])
else:
pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
uv = torch.FloatTensor(uv)
f0 = torch.FloatTensor(f0)
if hparams['pitch_type'] == 'cwt':
cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames]
f0_mean = item.get('f0_mean', item.get('cwt_mean'))
f0_std = item.get('f0_std', item.get('cwt_std'))
sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std})
elif hparams['pitch_type'] == 'ph':
if "f0_ph" in item:
f0 = torch.FloatTensor(item['f0_ph'])
else:
f0 = denorm_f0(f0, None, hparams)
f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0)
f0_phlevel_num = torch.zeros_like(phone).float().scatter_add(
0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
f0_ph = f0_phlevel_sum / f0_phlevel_num
f0, uv = norm_interp_f0(f0_ph, hparams)
else:
f0 = uv = torch.zeros_like(mel2ph)
pitch = None
sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = item['spk_id']
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
hparams = self.hparams
batch = super(FastSpeechDataset, self).collater(samples)
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None
uv = utils.collate_1d([s['uv'] for s in samples])
energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
if samples[0]['mel2ph'] is not None else None
batch.update({
'mel2ph': mel2ph,
'energy': energy,
'pitch': pitch,
'f0': f0,
'uv': uv,
})
if hparams['pitch_type'] == 'cwt':
cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
f0_std = torch.Tensor([s['f0_std'] for s in samples])
batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
return batch
def load_test_inputs(self):
binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer')
pkg = ".".join(binarizer_cls.split(".")[:-1])
cls_name = binarizer_cls.split(".")[-1]
binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
ph_set = json.load(open(ph_set_fn, 'r'))
print("| phone set: ", ph_set)
phone_encoder = build_phone_encoder(hparams['binary_data_dir'])
word_encoder = None
voice_encoder = VoiceEncoder().cuda()
encoder = [phone_encoder, word_encoder]
sizes = []
items = []
for i in range(len(self.avail_idxs)):
item = self._get_item(i)
item2tgfn = f"{hparams['test_input_dir'].replace('binary', 'processed')}/mfa_outputs/{item['item_name']}.TextGrid"
item = binarizer_cls.process_item(item['item_name'], item['ph'], item['txt'], item2tgfn,
item['wav_fn'], item['spk_id'], encoder, hparams['binarization_args'])
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
if hparams['binarization_args']['with_spk_embed'] else None # 判断是否保存embedding文件
items.append(item)
sizes.append(item['len'])
return items, sizes
class FastSpeechWordDataset(FastSpeechDataset):
def __getitem__(self, index):
sample = super(FastSpeechWordDataset, self).__getitem__(index)
item = self._get_item(index)
max_frames = hparams['max_frames']
sample["ph_words"] = item["ph_words"]
sample["word_tokens"] = torch.LongTensor(item["word_tokens"])
sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames]
sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']])
return sample
def collater(self, samples):
batch = super(FastSpeechWordDataset, self).collater(samples)
ph_words = [s['ph_words'] for s in samples]
batch['ph_words'] = ph_words
word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0)
batch['word_tokens'] = word_tokens
mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0)
batch['mel2word'] = mel2word
ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0)
batch['ph2word'] = ph2word
return batch
|