File size: 11,922 Bytes
222619b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from utils.cwt import get_lf0_cwt
import torch.optim
import torch.utils.data
import importlib
from utils.indexed_datasets import IndexedDataset
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse
import numpy as np
from tasks.base_task import BaseDataset
import torch
import torch.optim
import torch.utils.data
import utils
import torch.distributions
from utils.hparams import hparams
from utils.pitch_utils import norm_interp_f0
from resemblyzer import VoiceEncoder
import json
from data_gen.tts.data_gen_utils import build_phone_encoder

class BaseTTSDataset(BaseDataset):
    def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None):
        super().__init__(shuffle)
        self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir
        self.prefix = prefix
        self.hparams = hparams
        self.indexed_ds = None
        self.ext_mel2ph = None

        def load_size():
            self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')

        if prefix == 'test':
            if test_items is not None:
                self.indexed_ds, self.sizes = test_items, test_sizes
            else:
                load_size()
            if hparams['num_test_samples'] > 0:
                self.avail_idxs = [x for x in range(hparams['num_test_samples']) \
                                   if x < len(self.sizes)]
                if len(hparams['test_ids']) > 0:
                    self.avail_idxs = hparams['test_ids'] + self.avail_idxs
            else:
                self.avail_idxs = list(range(len(self.sizes)))
        else:
            load_size()
            self.avail_idxs = list(range(len(self.sizes)))

        if hparams['min_frames'] > 0:
            self.avail_idxs = [
                x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']]
        self.sizes = [self.sizes[i] for i in self.avail_idxs]

    def _get_item(self, index):
        if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
            index = self.avail_idxs[index]
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        return self.indexed_ds[index]

    def __getitem__(self, index):
        hparams = self.hparams
        item = self._get_item(index)
        assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index])
        max_frames = hparams['max_frames']
        spec = torch.Tensor(item['mel'])[:max_frames]
        max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple']
        spec = spec[:max_frames]
        phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']])
        sample = {
            "id": index,
            "item_name": item['item_name'],
            "text": item['txt'],
            "txt_token": phone,
            "mel": spec,
            "mel_nonpadding": spec.abs().sum(-1) > 0,
        }
        if hparams['use_spk_embed']:
            sample["spk_embed"] = torch.Tensor(item['spk_embed'])
        if hparams['use_spk_id']:
            sample["spk_id"] = item['spk_id']
        return sample

    def collater(self, samples):
        if len(samples) == 0:
            return {}
        hparams = self.hparams
        id = torch.LongTensor([s['id'] for s in samples])
        item_names = [s['item_name'] for s in samples]
        text = [s['text'] for s in samples]
        txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
        mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
        txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
        mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])

        batch = {
            'id': id,
            'item_name': item_names,
            'nsamples': len(samples),
            'text': text,
            'txt_tokens': txt_tokens,
            'txt_lengths': txt_lengths,
            'mels': mels,
            'mel_lengths': mel_lengths,
        }

        if hparams['use_spk_embed']:
            spk_embed = torch.stack([s['spk_embed'] for s in samples])
            batch['spk_embed'] = spk_embed
        if hparams['use_spk_id']:
            spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
            batch['spk_ids'] = spk_ids
        return batch


class FastSpeechDataset(BaseTTSDataset):
    def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None):
        super().__init__(prefix, shuffle, test_items, test_sizes, data_dir)
        self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None)
        if prefix == 'test' and hparams['test_input_dir'] != '':
            self.data_dir = hparams['test_input_dir']
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
            self.indexed_ds = sorted(self.indexed_ds, key=lambda item: item['item_name'])
            items = {}
            for i in range(len(self.indexed_ds)):
                speaker = self.indexed_ds[i]['item_name'].split('_')[0]
                if speaker not in items.keys():
                    items[speaker] = [i]
                else:
                    items[speaker].append(i)
            sort_item = sorted(items.values(), key=lambda item_pre_speaker: len(item_pre_speaker), reverse=True)
            self.avail_idxs = [n for a in sort_item for n in a][:hparams['num_test_samples']]
            self.indexed_ds, self.sizes = self.load_test_inputs()
            self.avail_idxs = [i for i in range(hparams['num_test_samples'])]

        if hparams['pitch_type'] == 'cwt':
            _, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10))

    def __getitem__(self, index):
        sample = super(FastSpeechDataset, self).__getitem__(index)
        item = self._get_item(index)
        hparams = self.hparams
        max_frames = hparams['max_frames']
        spec = sample['mel']
        T = spec.shape[0]
        phone = sample['txt_token']
        sample['energy'] = (spec.exp() ** 2).sum(-1).sqrt()
        sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None
        if hparams['use_pitch_embed']:
            assert 'f0' in item
            if hparams.get('normalize_pitch', False):
                f0 = item["f0"]
                if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0:
                    f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \
                                 hparams['f0_mean']
                    f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500)
                pitch = f0_to_coarse(f0)
                pitch = torch.LongTensor(pitch[:max_frames])
            else:
                pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None
            f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
            uv = torch.FloatTensor(uv)
            f0 = torch.FloatTensor(f0)
            if hparams['pitch_type'] == 'cwt':
                cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames]
                f0_mean = item.get('f0_mean', item.get('cwt_mean'))
                f0_std = item.get('f0_std', item.get('cwt_std'))
                sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std})
            elif hparams['pitch_type'] == 'ph':
                if "f0_ph" in item:
                    f0 = torch.FloatTensor(item['f0_ph'])
                else:
                    f0 = denorm_f0(f0, None, hparams)
                f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0)
                f0_phlevel_num = torch.zeros_like(phone).float().scatter_add(
                    0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
                f0_ph = f0_phlevel_sum / f0_phlevel_num
                f0, uv = norm_interp_f0(f0_ph, hparams)
        else:
            f0 = uv = torch.zeros_like(mel2ph)
            pitch = None
        sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch
        if hparams['use_spk_embed']:
            sample["spk_embed"] = torch.Tensor(item['spk_embed'])
        if hparams['use_spk_id']:
            sample["spk_id"] = item['spk_id']
        return sample

    def collater(self, samples):
        if len(samples) == 0:
            return {}
        hparams = self.hparams
        batch = super(FastSpeechDataset, self).collater(samples)
        f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
        pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None
        uv = utils.collate_1d([s['uv'] for s in samples])
        energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
        mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
            if samples[0]['mel2ph'] is not None else None
        batch.update({
            'mel2ph': mel2ph,
            'energy': energy,
            'pitch': pitch,
            'f0': f0,
            'uv': uv,
        })
        if hparams['pitch_type'] == 'cwt':
            cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
            f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
            f0_std = torch.Tensor([s['f0_std'] for s in samples])
            batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
        return batch

    def load_test_inputs(self):
        binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer')
        pkg = ".".join(binarizer_cls.split(".")[:-1])
        cls_name = binarizer_cls.split(".")[-1]
        binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
        ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
        ph_set = json.load(open(ph_set_fn, 'r'))
        print("| phone set: ", ph_set)
        phone_encoder = build_phone_encoder(hparams['binary_data_dir'])
        word_encoder = None
        voice_encoder = VoiceEncoder().cuda()
        encoder = [phone_encoder, word_encoder]
        sizes = []
        items = []
        for i in range(len(self.avail_idxs)):
            item = self._get_item(i)

            item2tgfn = f"{hparams['test_input_dir'].replace('binary', 'processed')}/mfa_outputs/{item['item_name']}.TextGrid"
            item = binarizer_cls.process_item(item['item_name'], item['ph'], item['txt'], item2tgfn,
                                              item['wav_fn'], item['spk_id'], encoder, hparams['binarization_args'])
            item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
                if hparams['binarization_args']['with_spk_embed'] else None  # 判断是否保存embedding文件
            items.append(item)
            sizes.append(item['len'])
        return items, sizes

class FastSpeechWordDataset(FastSpeechDataset):
    def __getitem__(self, index):
        sample = super(FastSpeechWordDataset, self).__getitem__(index)
        item = self._get_item(index)
        max_frames = hparams['max_frames']
        sample["ph_words"] = item["ph_words"]
        sample["word_tokens"] = torch.LongTensor(item["word_tokens"])
        sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames]
        sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']])
        return sample

    def collater(self, samples):
        batch = super(FastSpeechWordDataset, self).collater(samples)
        ph_words = [s['ph_words'] for s in samples]
        batch['ph_words'] = ph_words
        word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0)
        batch['word_tokens'] = word_tokens
        mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0)
        batch['mel2word'] = mel2word
        ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0)
        batch['ph2word'] = ph2word
        return batch