:tada: initial commit
Browse files- .gitignore +2 -0
- README.md +2 -2
- app.py +117 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.idea/
|
2 |
+
venv/
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: HotDogGPT
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
title: HotDogGPT
|
3 |
+
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import requests
|
7 |
+
|
8 |
+
MARKDOWN = """
|
9 |
+
# HotDogGPT π¬ + π
|
10 |
+
|
11 |
+
HotDogGPT is OpenAI Vision API experiment reproducing the famous
|
12 |
+
[Hot Dog, Not Hot Dog](https://www.youtube.com/watch?v=ACmydtFDTGs) app from Silicon
|
13 |
+
Valley.
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
<img width="600" src="https://miro.medium.com/v2/resize:fit:650/1*VrpXE1hE4rO1roK0laOd7g.png" alt="hotdog">
|
17 |
+
</p>
|
18 |
+
|
19 |
+
Visit [awesome-openai-vision-api-experiments](https://github.com/roboflow/awesome-openai-vision-api-experiments)
|
20 |
+
repository to find more OpenAI Vision API experiments or contribute your own.
|
21 |
+
"""
|
22 |
+
API_URL = "https://api.openai.com/v1/chat/completions"
|
23 |
+
CLASSES = ["π Hot Dog", "β Not Hot Dog"]
|
24 |
+
|
25 |
+
|
26 |
+
def preprocess_image(image: np.ndarray) -> np.ndarray:
|
27 |
+
image = np.fliplr(image)
|
28 |
+
return cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
29 |
+
|
30 |
+
|
31 |
+
def encode_image_to_base64(image: np.ndarray) -> str:
|
32 |
+
success, buffer = cv2.imencode('.jpg', image)
|
33 |
+
if not success:
|
34 |
+
raise ValueError("Could not encode image to JPEG format.")
|
35 |
+
|
36 |
+
encoded_image = base64.b64encode(buffer).decode('utf-8')
|
37 |
+
return encoded_image
|
38 |
+
|
39 |
+
|
40 |
+
def compose_payload(image: np.ndarray, prompt: str) -> dict:
|
41 |
+
base64_image = encode_image_to_base64(image)
|
42 |
+
return {
|
43 |
+
"model": "gpt-4-vision-preview",
|
44 |
+
"messages": [
|
45 |
+
{
|
46 |
+
"role": "user",
|
47 |
+
"content": [
|
48 |
+
{
|
49 |
+
"type": "text",
|
50 |
+
"text": prompt
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"type": "image_url",
|
54 |
+
"image_url": {
|
55 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
56 |
+
}
|
57 |
+
}
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"max_tokens": 300
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
def compose_classification_prompt(classes: list) -> str:
|
66 |
+
return (f"What is in the image? Return the class of the object in the image. Here "
|
67 |
+
f"are the classes: {', '.join(classes)}. You can only return one class "
|
68 |
+
f"from that list.")
|
69 |
+
|
70 |
+
|
71 |
+
def compose_headers(api_key: str) -> dict:
|
72 |
+
return {
|
73 |
+
"Content-Type": "application/json",
|
74 |
+
"Authorization": f"Bearer {api_key}"
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
def prompt_image(api_key: str, image: np.ndarray, prompt: str) -> str:
|
79 |
+
headers = compose_headers(api_key=api_key)
|
80 |
+
payload = compose_payload(image=image, prompt=prompt)
|
81 |
+
response = requests.post(url=API_URL, headers=headers, json=payload).json()
|
82 |
+
|
83 |
+
if 'error' in response:
|
84 |
+
raise ValueError(response['error']['message'])
|
85 |
+
return response['choices'][0]['message']['content']
|
86 |
+
|
87 |
+
|
88 |
+
def classify_image(api_key: str, image: np.ndarray) -> str:
|
89 |
+
if not api_key:
|
90 |
+
raise ValueError(
|
91 |
+
"API_KEY is not set. "
|
92 |
+
"Please follow the instructions in the README to set it up.")
|
93 |
+
image = preprocess_image(image=image)
|
94 |
+
prompt = compose_classification_prompt(classes=CLASSES)
|
95 |
+
response = prompt_image(api_key=api_key, image=image, prompt=prompt)
|
96 |
+
return response
|
97 |
+
|
98 |
+
|
99 |
+
with gr.Blocks() as demo:
|
100 |
+
gr.Markdown(MARKDOWN)
|
101 |
+
api_key_textbox = gr.Textbox(
|
102 |
+
label="π OpenAI API", type="password")
|
103 |
+
|
104 |
+
with gr.TabItem("Basic"):
|
105 |
+
with gr.Column():
|
106 |
+
input_image = gr.Image(
|
107 |
+
image_mode='RGB', type='numpy', height=500)
|
108 |
+
output_text = gr.Textbox(
|
109 |
+
label="Output")
|
110 |
+
submit_button = gr.Button("Submit")
|
111 |
+
|
112 |
+
submit_button.click(
|
113 |
+
fn=classify_image,
|
114 |
+
inputs=[api_key_textbox, input_image],
|
115 |
+
outputs=output_text)
|
116 |
+
|
117 |
+
demo.launch(debug=False, show_error=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
opencv-python
|
3 |
+
requests
|
4 |
+
gradio==3.50.2
|