import os import asyncio import gradio as gr from langchain_core.prompts import PromptTemplate from langchain_core.documents import Document from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai from langchain.chains.question_answering import load_qa_chain import torch from transformers import AutoTokenizer, AutoModelForCausalLM from PIL import Image import io from functools import lru_cache import concurrent.futures import pymupdf # Configure Gemini API genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) # Load Mistral model (lazy loading) model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" mistral_tokenizer = None mistral_model = None def load_mistral_model(): global mistral_tokenizer, mistral_model if mistral_tokenizer is None or mistral_model is None: mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.bfloat16 mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) @lru_cache(maxsize=100) def get_pdf_content(file_path): doc = pymupdf.open(file_path) content = [] for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() content.append(Document(page_content=text, metadata={"page": page_num + 1})) return content async def process_pdf(file_path, question): model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) pdf_content = get_pdf_content(file_path) context = "\n".join([doc.page_content for doc in pdf_content[:5]]) # Limit to first 5 pages for efficiency stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = await stuff_chain.arun({"input_documents": pdf_content[:5], "question": question, "context": context}) return stuff_answer async def process_image(image, question): model = genai.GenerativeModel('gemini-pro-vision') response = await model.generate_content_async([image, question]) return response.text async def generate_mistral_followup(answer): load_mistral_model() mistral_prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:" mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(mistral_model.device) with torch.no_grad(): mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50) mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) return mistral_output async def process_input(file, image, question): try: if file is not None: gemini_answer = await process_pdf(file.name, question) elif image is not None: gemini_answer = await process_image(image, question) else: return "Please upload a PDF file or an image." mistral_followup = await generate_mistral_followup(gemini_answer) combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_followup}" return combined_output except Exception as e: return f"An error occurred: {str(e)}" # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Optimized Multi-modal RAG Knowledge Retrieval using Gemini API and Mistral Model") with gr.Row(): with gr.Column(): input_file = gr.File(label="Upload PDF File") input_image = gr.Image(type="pil", label="Upload Image") input_question = gr.Textbox(label="Ask about the document or image") output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral") submit_button = gr.Button("Submit") submit_button.click(fn=lambda file, image, question: asyncio.run(process_input(file, image, question)), inputs=[input_file, input_image, input_question], outputs=output_text) if __name__ == "__main__": demo.launch()