Ritvik19 commited on
Commit
759b946
·
verified ·
1 Parent(s): 4ca6c23

section summary

Browse files
Files changed (2) hide show
  1. app.py +23 -1
  2. summary_chain.py +18 -0
app.py CHANGED
@@ -21,6 +21,7 @@ from insights_bullet_chain import insights_bullet_chain
21
  from synopsis_chain import synopsis_chain
22
  from custom_exceptions import InvalidArgumentError, InvalidCommandError
23
  from openai_configuration import openai_parser
 
24
 
25
  st.set_page_config(layout="wide")
26
 
@@ -44,6 +45,7 @@ Here's a quick guide to getting started with me:
44
  | `/insight-bullets <list of snippet ids>` | Extract and summarize key insights, methods, results, and conclusions. |
45
  | `/paper-synopsis <list of snippet ids>` | Generate a synopsis of the paper. |
46
  | `/deep-dive [<list of snippet ids>] <query>` | Query me with a specific context. |
 
47
 
48
 
49
  <br>
@@ -182,10 +184,29 @@ def rag_llm_wrapper(inputs):
182
  def query_llm_wrapper(inputs):
183
  context, question = parse_context_and_question(inputs)
184
  relevant_docs = [st.session_state.documents[c] for c in context]
185
- print(context, question)
186
  return query_llm(question, relevant_docs)
187
 
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  def chain_of_density_wrapper(inputs):
190
  if inputs == []:
191
  raise InvalidArgumentError("Please provide snippet ids")
@@ -326,6 +347,7 @@ if __name__ == "__main__":
326
  ("/condense-summary", list, chain_of_density_wrapper),
327
  ("/insight-bullets", list, insights_bullet_wrapper),
328
  ("/paper-synopsis", list, synopsis_wrapper),
 
329
  ]
330
  command_center = CommandCenter(
331
  default_input_type=str,
 
21
  from synopsis_chain import synopsis_chain
22
  from custom_exceptions import InvalidArgumentError, InvalidCommandError
23
  from openai_configuration import openai_parser
24
+ from summary_chain import summary_chain
25
 
26
  st.set_page_config(layout="wide")
27
 
 
45
  | `/insight-bullets <list of snippet ids>` | Extract and summarize key insights, methods, results, and conclusions. |
46
  | `/paper-synopsis <list of snippet ids>` | Generate a synopsis of the paper. |
47
  | `/deep-dive [<list of snippet ids>] <query>` | Query me with a specific context. |
48
+ | `/summarise-section [<list of snippet ids>] <section name>` | Summarize a specific section of the paper. |
49
 
50
 
51
  <br>
 
184
  def query_llm_wrapper(inputs):
185
  context, question = parse_context_and_question(inputs)
186
  relevant_docs = [st.session_state.documents[c] for c in context]
 
187
  return query_llm(question, relevant_docs)
188
 
189
 
190
+ def summarise_wrapper(inputs):
191
+ context, query = parse_context_and_question(inputs)
192
+ document = [st.session_state.documents[c] for c in context]
193
+ llm = ChatOpenAI(model=st.session_state.model, temperature=0)
194
+ with get_openai_callback() as cb:
195
+ summary = summary_chain(llm).invoke({"section_name": query, "paper": document})
196
+ stats = cb
197
+ st.session_state.messages.append(
198
+ (f"/summarise-section {query}", summary, "identity")
199
+ )
200
+ st.session_state.costing.append(
201
+ {
202
+ "prompt tokens": stats.prompt_tokens,
203
+ "completion tokens": stats.completion_tokens,
204
+ "cost": stats.total_cost,
205
+ }
206
+ )
207
+ return (summary, "identity")
208
+
209
+
210
  def chain_of_density_wrapper(inputs):
211
  if inputs == []:
212
  raise InvalidArgumentError("Please provide snippet ids")
 
347
  ("/condense-summary", list, chain_of_density_wrapper),
348
  ("/insight-bullets", list, insights_bullet_wrapper),
349
  ("/paper-synopsis", list, synopsis_wrapper),
350
+ ("/summarise-section", str, summarise_wrapper),
351
  ]
352
  command_center = CommandCenter(
353
  default_input_type=str,
summary_chain.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import PromptTemplate
2
+ from langchain_core.output_parsers import StrOutputParser
3
+
4
+ summary_prompt_template = """
5
+ Given the {section_name} section of a machine learning research paper, produce a comprehensive summary that encompasses all vital information, \
6
+ and detailed explanations of any mathematical equations present.
7
+ The goal is for this summary to function as an autonomous document that conveys the essence and key contributions of the research succinctly.
8
+ Ensure that if any mathematical content is present it is not only included but also clearly elucidated, highlighting its relevance to the research's overall objectives and results.
9
+ Structure the summary to be easily understandable, offering readers a full grasp of the section's critical insights without the need to consult the original paper.
10
+
11
+ Here is the excerpt from the research paper: {paper}
12
+ """
13
+ summary_output_parser = StrOutputParser()
14
+ summary_prompt = PromptTemplate(
15
+ template=summary_prompt_template,
16
+ input_variables=["section_name", "paper"],
17
+ )
18
+ summary_chain = lambda model: summary_prompt | model | summary_output_parser