Zeta / app.py
Ritvik19's picture
Upload app.py
20c0b83 verified
raw
history blame
9.67 kB
import math
import os
import re
from pathlib import Path
from statistics import median
import json
import pandas as pd
import streamlit as st
from bs4 import BeautifulSoup
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationalRetrievalChain
from langchain.docstore.document import Document
from langchain.document_loaders import PDFMinerPDFasHTMLLoader, WebBaseLoader
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_openai import ChatOpenAI
from ragatouille import RAGPretrainedModel
st.set_page_config(layout="wide")
os.environ["OPENAI_API_KEY"] = "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"
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath("vector_store")
deep_strip = lambda text: re.sub(r"\s+", " ", text or "").strip()
get_references = lambda relevant_docs: " ".join(
[f"[{ref}]" for ref in sorted([ref.metadata["chunk_id"] for ref in relevant_docs])]
)
session_state_2_llm_chat_history = lambda session_state: [
ss[:2] for ss in session_state
]
def get_conversation_history():
return json.dumps(
{
"document_urls": (
st.session_state.source_doc_urls
if "source_doc_urls" in st.session_state
else []
),
"document_snippets": (
st.session_state.headers.to_list()
if "headers" in st.session_state
else []
),
"conversation": [
{"human": message[0], "ai": message[1], "references": message[2]}
for message in st.session_state.messages
],
"costing": (
st.session_state.costing if "costing" in st.session_state else []
),
"total_cost": (
{
k: sum(d[k] for d in st.session_state.costing)
for k in st.session_state.costing[0]
}
if "costing" in st.session_state and len(st.session_state.costing) > 0
else {}
),
}
)
ai_message_format = lambda message, references: f"{message}\n\n---\n\n{references}"
def embeddings_on_local_vectordb(texts):
colbert = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv1.9")
colbert.index(
collection=[chunk.page_content for chunk in texts],
split_documents=False,
document_metadatas=[chunk.metadata for chunk in texts],
index_name="vector_store",
)
retriever = colbert.as_langchain_retriever(k=5)
retriever = MultiQueryRetriever.from_llm(
retriever=retriever, llm=ChatOpenAI(temperature=0)
)
return retriever
def query_llm(retriever, query):
qa_chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(model="gpt-4-0125-preview", temperature=0),
retriever=retriever,
return_source_documents=True,
chain_type="stuff",
)
relevant_docs = retriever.get_relevant_documents(query)
with get_openai_callback() as cb:
result = qa_chain(
{
"question": query,
"chat_history": session_state_2_llm_chat_history(
st.session_state.messages
),
}
)
stats = cb
result = result["answer"]
references = get_references(relevant_docs)
st.session_state.messages.append((query, result, references))
return result, references, stats
def input_fields():
st.session_state.source_doc_urls = [
url.strip()
for url in st.sidebar.text_area(
"Source Document URLs\n(New line separated)", height=50
).split("\n")
]
def process_documents():
try:
snippets = []
for url in st.session_state.source_doc_urls:
if url.endswith(".pdf"):
snippets.extend(process_pdf(url))
else:
snippets.extend(process_web(url))
st.session_state.retriever = embeddings_on_local_vectordb(snippets)
st.session_state.headers = pd.Series(
[snip.metadata["header"] for snip in snippets], name="references"
)
except Exception as e:
st.error(f"An error occurred: {e}")
def process_pdf(url):
data = PDFMinerPDFasHTMLLoader(url).load()[0]
content = BeautifulSoup(data.page_content, "html.parser").find_all("div")
snippets = get_pdf_snippets(content)
filtered_snippets = filter_pdf_snippets(snippets, new_line_threshold_ratio=0.4)
median_font_size = math.ceil(
median([font_size for _, font_size in filtered_snippets])
)
semantic_snippets = get_pdf_semantic_snippets(filtered_snippets, median_font_size)
document_snippets = [
Document(
page_content=deep_strip(snip[1]["header_text"]) + " " + deep_strip(snip[0]),
metadata={
"header": " ".join(snip[1]["header_text"].split()[:10]),
"source_url": url,
"source_type": "pdf",
"chunk_id": i,
},
)
for i, snip in enumerate(semantic_snippets)
]
return document_snippets
def get_pdf_snippets(content):
current_font_size = None
current_text = ""
snippets = []
for cntnt in content:
span = cntnt.find("span")
if not span:
continue
style = span.get("style")
if not style:
continue
font_size = re.findall("font-size:(\d+)px", style)
if not font_size:
continue
font_size = int(font_size[0])
if not current_font_size:
current_font_size = font_size
if font_size == current_font_size:
current_text += cntnt.text
else:
snippets.append((current_text, current_font_size))
current_font_size = font_size
current_text = cntnt.text
snippets.append((current_text, current_font_size))
return snippets
def filter_pdf_snippets(content_list, new_line_threshold_ratio):
filtered_list = []
for e, (content, font_size) in enumerate(content_list):
newline_count = content.count("\n")
total_chars = len(content)
ratio = newline_count / total_chars
if ratio <= new_line_threshold_ratio:
filtered_list.append((content, font_size))
return filtered_list
def get_pdf_semantic_snippets(filtered_snippets, median_font_size):
semantic_snippets = []
current_header = None
current_content = []
header_font_size = None
content_font_sizes = []
for content, font_size in filtered_snippets:
if font_size > median_font_size:
if current_header is not None:
metadata = {
"header_font_size": header_font_size,
"content_font_size": (
median(content_font_sizes) if content_font_sizes else None
),
"header_text": current_header,
}
semantic_snippets.append((current_content, metadata))
current_content = []
content_font_sizes = []
current_header = content
header_font_size = font_size
else:
content_font_sizes.append(font_size)
if current_content:
current_content += " " + content
else:
current_content = content
if current_header is not None:
metadata = {
"header_font_size": header_font_size,
"content_font_size": (
median(content_font_sizes) if content_font_sizes else None
),
"header_text": current_header,
}
semantic_snippets.append((current_content, metadata))
return semantic_snippets
def process_web(url):
data = WebBaseLoader(url).load()[0]
document_snippets = [
Document(
page_content=deep_strip(data.page_content),
metadata={
"header": data.metadata["title"],
"source_url": url,
"source_type": "web",
},
)
]
return document_snippets
def boot():
st.title("Agent Xi - An ArXiv Chatbot")
st.sidebar.title("Input Documents")
input_fields()
st.sidebar.button("Submit Documents", on_click=process_documents)
if "headers" in st.session_state:
st.sidebar.write("### References")
st.sidebar.write(st.session_state.headers)
if "costing" not in st.session_state:
st.session_state.costing = []
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
st.chat_message("human").write(message[0])
st.chat_message("ai").write(ai_message_format(message[1], message[2]))
if query := st.chat_input():
st.chat_message("human").write(query)
response, references, stats = query_llm(st.session_state.retriever, query)
st.chat_message("ai").write(ai_message_format(response, references))
st.session_state.costing.append(
{
"prompt tokens": stats.prompt_tokens,
"completion tokens": stats.completion_tokens,
"cost": stats.total_cost,
}
)
stats_df = pd.DataFrame(st.session_state.costing)
stats_df.loc["total"] = stats_df.sum()
st.sidebar.write(stats_df)
st.sidebar.download_button(
"Download Conversation",
get_conversation_history(),
"conversation.json",
)
if __name__ == "__main__":
boot()