import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import sqlite3 model_name = "your-model-name" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def read_files_from_db(): conn = sqlite3.connect('your_database.db') cursor = conn.cursor() cursor.execute("SELECT * FROM files") files = cursor.fetchall() conn.close() return files def generate_code(input_text): files = read_files_from_db() context = "Available files:\n" for file in files: context += f"- {file[1]}\n" prompt = f"{context}\nGenerate code based on the following input:\n{input_text}\n" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=500) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_code iface = gr.Interface( fn=generate_code, inputs="text", outputs="text", title="Code Generation AI", description="Enter your code or instructions, and the AI will generate code based on available files." ) iface.launch()