import streamlit as st import transformers as tr import spacy as sp def load_pipeline(name: str): return tr.pipeline('token-classification', model=name) pipeline = load_pipeline('Rexhaif/rubert-base-srl-seqlabeling') def convert_to_spacy(text, result): output = { 'text': text, 'title': None } ents = [] for res in result: if not res['word'].startswith("##"): ents.append({ 'start': res['start'], 'end': res['end'], 'label': res['entity'].replace("B-", "") }) else: ents[-1]['end'] = res['end'] output['ents'] = ents return output colors = { 'PREDICATE': "#80bdff", 'КАУЗАТИВ': "#73ffbe", 'КАУЗАТОР': "#ff5b5e", 'ЭКСПЕРИЕНЦЕР': "#efff42", 'ДРУГОЕ': "#924fff", 'ИНСТРУМЕНТ': "#28fff1" } options = { 'ents': list(colors.keys()), 'colors': colors } st.title("Semantic Role Labeling for Russian Language") st.header("Type your sentence to see predicate, arguments and their roles") text = st.text_input('Sentence', 'представители силовых ведомств удивлены такой наглости') result = pipeline(text) html = sp.displacy.render( convert_to_spacy(text, result=result), style='ent', manual=True, options=options, jupyter=False ) st.markdown(html, unsafe_allow_html=True)