multimodalart HF staff commited on
Commit
059f3f4
·
1 Parent(s): 422eed1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -31
app.py CHANGED
@@ -52,6 +52,7 @@ sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True
52
 
53
  sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
54
 
 
55
 
56
  vae = AutoencoderKL.from_pretrained(
57
  "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
@@ -184,39 +185,24 @@ def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_lora
184
  loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
185
  cross_attention_kwargs = None
186
  if last_lora != repo_name:
187
- if last_merged:
188
- del pipe
189
- gc.collect()
190
- pipe = copy.deepcopy(original_pipe)
191
- pipe.to(device)
192
- elif(last_fused):
193
  pipe.unfuse_lora()
194
  pipe.unload_lora_weights()
195
- is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
196
-
197
- if is_compatible:
198
- pipe.load_lora_weights(loaded_state_dict)
199
- pipe.fuse_lora(lora_scale)
200
- last_fused = True
201
- else:
202
- is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
203
- if(is_pivotal):
204
- pipe.load_lora_weights(loaded_state_dict)
205
- pipe.fuse_lora(lora_scale)
206
- last_fused = True
207
-
208
- #Add the textual inversion embeddings from pivotal tuning models
209
- text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
210
- text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
211
- tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
212
- embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
213
- embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
214
- embhandler.load_embeddings(embedding_path)
215
-
216
- else:
217
- merge_incompatible_lora(full_path_lora, lora_scale)
218
- last_fused=False
219
- last_merged = True
220
 
221
  image = pipe(
222
  prompt=prompt,
 
52
 
53
  sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
54
 
55
+ lcm_lora_id = "lcm-sd/lcm-sdxl-base-1.0-lora"
56
 
57
  vae = AutoencoderKL.from_pretrained(
58
  "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
 
185
  loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
186
  cross_attention_kwargs = None
187
  if last_lora != repo_name:
188
+ if(last_fused):
 
 
 
 
 
189
  pipe.unfuse_lora()
190
  pipe.unload_lora_weights()
191
+ #is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
192
+ pipe.load_lora_weights(loaded_state_dict)#, adapter_name="loaded_lora")
193
+ #pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm_lora")
194
+ #pipe.set_adapters(["loaded_lora", "lcm_lora"], adapter_weights=[0.8, 1.0])
195
+ pipe.fuse_lora()
196
+ last_fused = True
197
+ is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
198
+ if(is_pivotal):
199
+ #Add the textual inversion embeddings from pivotal tuning models
200
+ text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
201
+ text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
202
+ tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
203
+ embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
204
+ embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
205
+ embhandler.load_embeddings(embedding_path)
 
 
 
 
 
 
 
 
 
 
206
 
207
  image = pipe(
208
  prompt=prompt,