import os import gradio as gr import time import math import logging import matplotlib.pyplot as plt import numpy as np from lib import format_audio_output from lib.ui_content import header_html, demo_text_info from lib.book_utils import get_available_books, get_book_info, get_chapter_text from lib.text_utils import count_tokens from tts_model import TTSModel # Set HF_HOME for faster restarts with cached models/voices os.environ["HF_HOME"] = "/data/.huggingface" # Create TTS model instance model = TTSModel() # Configure logging logging.basicConfig(level=logging.DEBUG) # Suppress matplotlib debug messages logging.getLogger('matplotlib').setLevel(logging.WARNING) logger = logging.getLogger(__name__) logger.debug("Starting app initialization...") model = TTSModel() def initialize_model(): """Initialize model and get voices""" if model.model is None: if not model.initialize(): raise gr.Error("Failed to initialize model") voices = model.list_voices() if not voices: raise gr.Error("No voices found. Please check the voices directory.") default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None return gr.update(choices=voices, value=default_voice) def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress): # Calculate time metrics elapsed = time.time() - start_time gpu_time_left = max(0, gpu_timeout - elapsed) # Calculate chunk time more accurately prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0 chunk_time = elapsed - prev_total_time # Validate metrics before adding to state if chunk_time > 0 and tokens_per_sec >= 0: # Update progress state with validated metrics progress_state["progress"] = chunk_num / total_chunks progress_state["total_chunks"] = total_chunks progress_state["gpu_time_left"] = gpu_time_left progress_state["tokens_per_sec"].append(float(tokens_per_sec)) progress_state["rtf"].append(float(rtf)) progress_state["chunk_times"].append(chunk_time) # Only update progress display during processing progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s") def generate_speech_from_ui(text, voice_names, speed, progress=gr.Progress(track_tqdm=False)): """Handle text-to-speech generation from the Gradio UI""" try: if not text or not voice_names: raise gr.Error("Please enter text and select at least one voice") start_time = time.time() # Calculate GPU timeout based on token estimate tokens = count_tokens(text) time_estimate = math.ceil(tokens / lab_tps) gpu_timeout = min(max(int(time_estimate * 1.3), 15), 120) # Cap between 15-120s # Create progress state with explicit type initialization progress_state = { "progress": 0.0, "tokens_per_sec": [], # Initialize as empty list "rtf": [], # Initialize as empty list "chunk_times": [], # Initialize as empty list "gpu_time_left": float(gpu_timeout), # Ensure float "total_chunks": 0 } # Handle single or multiple voices if isinstance(voice_names, str): voice_names = [voice_names] # Generate speech with progress tracking using combined voice audio_array, duration, metrics = model.generate_speech( text, voice_names, speed, gpu_timeout=gpu_timeout, progress_callback=update_progress, progress_state=progress_state, progress=progress ) # Format output for Gradio audio_output, duration_text = format_audio_output(audio_array) # Create plot and metrics text outside GPU context fig, metrics_text = create_performance_plot(metrics, voice_names) return ( audio_output, fig, metrics_text ) except Exception as e: raise gr.Error(f"Generation failed: {str(e)}") def create_performance_plot(metrics, voice_names): """Create performance plot and metrics text from generation metrics""" # Clean and process the data tokens_per_sec = np.array(metrics["tokens_per_sec"]) rtf_values = np.array(metrics["rtf"]) # Calculate statistics using cleaned data median_tps = float(np.median(tokens_per_sec)) mean_tps = float(np.mean(tokens_per_sec)) std_tps = float(np.std(tokens_per_sec)) # Set y-axis limits based on data range y_min = max(0, np.min(tokens_per_sec) * 0.9) y_max = np.max(tokens_per_sec) * 1.1 # Create plot fig, ax = plt.subplots(figsize=(10, 5)) fig.patch.set_facecolor('black') ax.set_facecolor('black') # Plot data points chunk_nums = list(range(1, len(tokens_per_sec) + 1)) # Plot data points ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6) # Set y-axis limits with padding padding = 0.1 * (y_max - y_min) ax.set_ylim(max(0, y_min - padding), y_max + padding) # Add median line ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', label=f'Median: {median_tps:.1f} tokens/sec') # Style improvements ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white') ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white') ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white') ax.tick_params(axis='both', which='major', labelsize=20, colors='white') ax.spines['bottom'].set_color('white') ax.spines['top'].set_color('white') ax.spines['left'].set_color('white') ax.spines['right'].set_color('white') ax.grid(False) ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', labelcolor='white') plt.tight_layout() # Calculate average RTF from individual chunk RTFs rtf = np.mean(rtf_values) # Prepare metrics text metrics_text = ( f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" + f"Real-time Factor: {rtf:.3f}\n" + f"Real Time Speed: {int(1/rtf)}x\n" + f"Processing Time: {int(metrics['total_time'])}s\n" + f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" + f"Voices: {', '.join(voice_names)}" ) return fig, metrics_text # Create Gradio interface with gr.Blocks(title="Kokoro TTS Demo", css=""" .equal-height { min-height: 400px; display: flex; flex-direction: column; } .token-label { font-size: 1rem; margin-bottom: 0.3rem; text-align: center; padding: 0.2rem 0; } .token-count { color: #4169e1; } #gradio-accordion > .label-wrap { background: radial-gradient(circle, rgba(147,51,234,0.4) 0%, rgba(30,58,138,0.4) 100%); padding: 0.8rem 1rem; font-weight: 500; color: #000000; } """) as demo: gr.HTML(header_html) with gr.Row(): # Column 1: Text Input and Book Selection with gr.Column(elem_classes="equal-height"): # Book and Chapter Selection Row with gr.Row(): # Book selection books = get_available_books() book_dropdown = gr.Dropdown( label=None, show_label=False, choices=[book['label'] for book in books], value=books[0]['label'] if books else None, type="value", allow_custom_value=True, scale=3 ) # Initialize chapters for first book initial_book = books[0]['value'] if books else None initial_chapters = [] if initial_book: book_path = os.path.join("texts/processed", initial_book) _, chapters = get_book_info(book_path) initial_chapters = [ch['title'] for ch in chapters] # Chapter selection with initial chapters chapter_dropdown = gr.Dropdown( show_label=False, label=None, choices=initial_chapters, value=initial_chapters[0] if initial_chapters else None, type="value", allow_custom_value=True, scale=2 ) lab_tps = 175 # Average tokens per second for o200k_base lab_rts = 50 # Average real-time speed for o200k_base # Text input area with initial chapter text initial_text = "" if initial_chapters and initial_book: book_path = os.path.join("texts/processed", initial_book) _, chapters = get_book_info(book_path) if chapters: initial_text = get_chapter_text(book_path, chapters[0]['id']) tokens = count_tokens(initial_text) time_estimate = math.ceil(tokens / lab_tps) output_estimate = (time_estimate * lab_rts)//60 initial_label = f'