import os import gradio as gr import spaces import time import matplotlib.pyplot as plt import numpy as np import torch import os from tts_model import TTSModel from lib import format_audio_output from lib.ui_content import header_html, demo_text_info # Set HF_HOME for faster restarts with cached models/voices os.environ["HF_HOME"] = "/data/.huggingface" # Create TTS model instance model = TTSModel() def initialize_model(): """Initialize model and get voices""" if model.model is None: if not model.initialize(): raise gr.Error("Failed to initialize model") voices = model.list_voices() if not voices: raise gr.Error("No voices found. Please check the voices directory.") default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None return gr.update(choices=voices, value=default_voice) def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress): # Calculate time metrics elapsed = time.time() - start_time gpu_time_left = max(0, gpu_timeout - elapsed) # Calculate chunk time more accurately prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0 chunk_time = elapsed - prev_total_time # Validate metrics before adding to state if chunk_time > 0 and tokens_per_sec >= 0: # Update progress state with validated metrics progress_state["progress"] = chunk_num / total_chunks progress_state["total_chunks"] = total_chunks progress_state["gpu_time_left"] = gpu_time_left progress_state["tokens_per_sec"].append(float(tokens_per_sec)) progress_state["rtf"].append(float(rtf)) progress_state["chunk_times"].append(chunk_time) # Only update progress display during processing progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s") def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)): """Handle text-to-speech generation from the Gradio UI""" try: if not text or not voice_names: raise gr.Error("Please enter text and select at least one voice") start_time = time.time() # Create progress state with explicit type initialization progress_state = { "progress": 0.0, "tokens_per_sec": [], # Initialize as empty list "rtf": [], # Initialize as empty list "chunk_times": [], # Initialize as empty list "gpu_time_left": float(gpu_timeout), # Ensure float "total_chunks": 0 } # Handle single or multiple voices if isinstance(voice_names, str): voice_names = [voice_names] # Generate speech with progress tracking using combined voice audio_array, duration, metrics = model.generate_speech( text, voice_names, speed, gpu_timeout=gpu_timeout, progress_callback=update_progress, progress_state=progress_state, progress=progress ) # Format output for Gradio audio_output, duration_text = format_audio_output(audio_array) # Create plot and metrics text outside GPU context fig, metrics_text = create_performance_plot(metrics, voice_names) return ( audio_output, fig, metrics_text ) except Exception as e: raise gr.Error(f"Generation failed: {str(e)}") def create_performance_plot(metrics, voice_names): """Create performance plot and metrics text from generation metrics""" # Clean and process the data tokens_per_sec = np.array(metrics["tokens_per_sec"]) rtf_values = np.array(metrics["rtf"]) # Calculate statistics using cleaned data median_tps = float(np.median(tokens_per_sec)) mean_tps = float(np.mean(tokens_per_sec)) std_tps = float(np.std(tokens_per_sec)) # Set y-axis limits based on data range y_min = max(0, np.min(tokens_per_sec) * 0.9) y_max = np.max(tokens_per_sec) * 1.1 # Create plot fig, ax = plt.subplots(figsize=(10, 5)) fig.patch.set_facecolor('black') ax.set_facecolor('black') # Plot data points chunk_nums = list(range(1, len(tokens_per_sec) + 1)) # Plot data points ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6) # Set y-axis limits with padding padding = 0.1 * (y_max - y_min) ax.set_ylim(max(0, y_min - padding), y_max + padding) # Add median line ax.axhline(y=median_tps, color='#05d9e8', linestyle='--', label=f'Median: {median_tps:.1f} tokens/sec') # Style improvements ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white') ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white') ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white') ax.tick_params(axis='both', which='major', labelsize=20, colors='white') ax.spines['bottom'].set_color('white') ax.spines['top'].set_color('white') ax.spines['left'].set_color('white') ax.spines['right'].set_color('white') ax.grid(False) ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left', labelcolor='white') plt.tight_layout() # Calculate average RTF from individual chunk RTFs rtf = np.mean(rtf_values) # Prepare metrics text metrics_text = ( f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" + f"Real-time Factor: {rtf:.3f}\n" + f"Real Time Speed: {int(1/rtf)}x\n" + f"Processing Time: {int(metrics['total_time'])}s\n" + f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" + f"Voices: {', '.join(voice_names)}" ) return fig, metrics_text # Create Gradio interface with gr.Blocks(title="Kokoro TTS Demo", css=""" .equal-height { min-height: 400px; display: flex; flex-direction: column; } """) as demo: gr.HTML(header_html) with gr.Row(): # Column 1: Text Input with open("the_time_machine_hgwells.txt") as f: text = f.readlines()[:200] text = "".join(text) with gr.Column(elem_classes="equal-height"): text_input = gr.TextArea( label="Text to speak", placeholder="Enter text here or upload a .txt file", lines=10, value=text ) # Column 2: Controls with gr.Column(elem_classes="equal-height"): file_input = gr.File( label="Upload .txt file", file_types=[".txt"], type="binary" ) def load_text_from_file(file_bytes): if file_bytes is None: return None try: return file_bytes.decode('utf-8') except Exception as e: raise gr.Error(f"Failed to read file: {str(e)}") file_input.change( fn=load_text_from_file, inputs=[file_input], outputs=[text_input] ) with gr.Group(): voice_dropdown = gr.Dropdown( label="Voice(s)", choices=[], # Start empty, will be populated after initialization value=None, allow_custom_value=True, multiselect=True ) # Add refresh button to manually update voice list refresh_btn = gr.Button("🔄 Refresh Voices", size="sm") speed_slider = gr.Slider( label="Speed", minimum=0.5, maximum=2.0, value=1.0, step=0.1 ) gpu_timeout_slider = gr.Slider( label="GPU Timeout (seconds)", minimum=15, maximum=120, value=60, step=1, info="Maximum time allowed for GPU processing" ) submit_btn = gr.Button("Generate Speech", variant="primary") # Column 3: Output with gr.Column(elem_classes="equal-height"): audio_output = gr.Audio( label="Generated Speech", type="numpy", format="wav", autoplay=False ) progress_bar = gr.Progress(track_tqdm=False) metrics_text = gr.Textbox( label="Performance Summary", interactive=False, lines=5 ) metrics_plot = gr.Plot( label="Processing Metrics", show_label=True, format="png" # Explicitly set format to PNG which is supported by matplotlib ) # Set up event handlers refresh_btn.click( fn=initialize_model, outputs=[voice_dropdown] ) submit_btn.click( fn=generate_speech_from_ui, inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider], outputs=[audio_output, metrics_plot, metrics_text], show_progress=True ) # Add text analysis info with gr.Row(): with gr.Column(): gr.Markdown(demo_text_info) # Initialize voices on load demo.load( fn=initialize_model, outputs=[voice_dropdown] ) # Launch the app if __name__ == "__main__": demo.launch()