Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
# Configurar el clasificador de sentimientos multiling眉e
|
6 |
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
@@ -8,7 +9,7 @@ classifier = pipeline(task="zero-shot-classification", model="facebook/bart-larg
|
|
8 |
# Funci贸n para analizar los sentimientos de una lista de textos
|
9 |
def analyze_sentiments(texts):
|
10 |
if not texts:
|
11 |
-
return "0.0%", "0.0%", "0.0%" # Manejar el caso donde no hay textos para analizar
|
12 |
|
13 |
positive, negative, neutral = 0, 0, 0
|
14 |
for text in texts:
|
@@ -26,7 +27,15 @@ def analyze_sentiments(texts):
|
|
26 |
positive_percent = round((positive / total) * 100, 1)
|
27 |
negative_percent = round((negative / total) * 100, 1)
|
28 |
neutral_percent = round((neutral / total) * 100, 1)
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Funci贸n para cargar el archivo CSV y analizar los primeros 100 comentarios
|
32 |
def analyze_sentiment_from_csv(file):
|
@@ -37,9 +46,9 @@ def analyze_sentiment_from_csv(file):
|
|
37 |
texts = df['content'].head(100).tolist() # Tomar solo los primeros 100 comentarios
|
38 |
return analyze_sentiments(texts)
|
39 |
except pd.errors.ParserError as e:
|
40 |
-
return f"Error al analizar el archivo CSV: {e}", "", ""
|
41 |
except Exception as e:
|
42 |
-
return f"Error inesperado: {e}", "", ""
|
43 |
|
44 |
# Configurar la interfaz de Gradio
|
45 |
demo = gr.Interface(
|
@@ -48,12 +57,12 @@ demo = gr.Interface(
|
|
48 |
outputs=[
|
49 |
gr.Textbox(label="Porcentaje Positivo"),
|
50 |
gr.Textbox(label="Porcentaje Negativo"),
|
51 |
-
gr.Textbox(label="Porcentaje Neutro")
|
|
|
52 |
],
|
53 |
-
title="Analizador de Sentimientos V.
|
54 |
-
|
55 |
)
|
56 |
|
57 |
demo.launch(share=True)
|
58 |
|
59 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from transformers import pipeline
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
|
6 |
# Configurar el clasificador de sentimientos multiling眉e
|
7 |
classifier = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli")
|
|
|
9 |
# Funci贸n para analizar los sentimientos de una lista de textos
|
10 |
def analyze_sentiments(texts):
|
11 |
if not texts:
|
12 |
+
return "0.0%", "0.0%", "0.0%", None # Manejar el caso donde no hay textos para analizar
|
13 |
|
14 |
positive, negative, neutral = 0, 0, 0
|
15 |
for text in texts:
|
|
|
27 |
positive_percent = round((positive / total) * 100, 1)
|
28 |
negative_percent = round((negative / total) * 100, 1)
|
29 |
neutral_percent = round((neutral / total) * 100, 1)
|
30 |
+
|
31 |
+
# Crear el gr谩fico circular
|
32 |
+
fig, ax = plt.subplots()
|
33 |
+
ax.pie([positive_percent, negative_percent, neutral_percent], labels=["Positivo", "Negativo", "Neutro"], autopct='%1.1f%%', colors=['green', 'red', 'blue'])
|
34 |
+
plt.title("Distribuci贸n de Sentimientos")
|
35 |
+
plt.savefig("sentiment_pie_chart.png")
|
36 |
+
plt.close(fig)
|
37 |
+
|
38 |
+
return f"{positive_percent}%", f"{negative_percent}%", f"{neutral_percent}%", "sentiment_pie_chart.png"
|
39 |
|
40 |
# Funci贸n para cargar el archivo CSV y analizar los primeros 100 comentarios
|
41 |
def analyze_sentiment_from_csv(file):
|
|
|
46 |
texts = df['content'].head(100).tolist() # Tomar solo los primeros 100 comentarios
|
47 |
return analyze_sentiments(texts)
|
48 |
except pd.errors.ParserError as e:
|
49 |
+
return f"Error al analizar el archivo CSV: {e}", "", "", None
|
50 |
except Exception as e:
|
51 |
+
return f"Error inesperado: {e}", "", "", None
|
52 |
|
53 |
# Configurar la interfaz de Gradio
|
54 |
demo = gr.Interface(
|
|
|
57 |
outputs=[
|
58 |
gr.Textbox(label="Porcentaje Positivo"),
|
59 |
gr.Textbox(label="Porcentaje Negativo"),
|
60 |
+
gr.Textbox(label="Porcentaje Neutro"),
|
61 |
+
gr.Image(type="filepath", label="Gr谩fico de Sentimientos")
|
62 |
],
|
63 |
+
title="Analizador de Sentimientos V.3",
|
64 |
+
description="Porcentaje de comentarios positivos, negativos y neutrales. Y GRAFICO CIRCULAR"
|
65 |
)
|
66 |
|
67 |
demo.launch(share=True)
|
68 |
|
|