Spaces:
Runtime error
Runtime error
import os | |
import random | |
import autocuda | |
from pyabsa.utils.pyabsa_utils import fprint | |
from diffusers import ( | |
AutoencoderKL, | |
UNet2DConditionModel, | |
StableDiffusionPipeline, | |
StableDiffusionImg2ImgPipeline, | |
DPMSolverMultistepScheduler, | |
) | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import utils | |
import datetime | |
import time | |
import psutil | |
from Waifu2x.magnify import ImageMagnifier | |
start_time = time.time() | |
is_colab = utils.is_google_colab() | |
device = autocuda.auto_cuda() | |
magnifier = ImageMagnifier() | |
class Model: | |
def __init__(self, name, path="", prefix=""): | |
self.name = name | |
self.path = path | |
self.prefix = prefix | |
self.pipe_t2i = None | |
self.pipe_i2i = None | |
models = [ | |
# Model("anything v3", "anything-v3.0", "anything v3 style"), | |
Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"), | |
] | |
# Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "), | |
# Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "), | |
# Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "), | |
# Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ") | |
# Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""), | |
# Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""), | |
# Model("Robo Diffusion", "nousr/robo-diffusion", ""), | |
scheduler = DPMSolverMultistepScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
trained_betas=None, | |
predict_epsilon=True, | |
thresholding=False, | |
algorithm_type="dpmsolver++", | |
solver_type="midpoint", | |
lower_order_final=True, | |
) | |
custom_model = None | |
if is_colab: | |
models.insert(0, Model("Custom model")) | |
custom_model = models[0] | |
last_mode = "txt2img" | |
current_model = models[1] if is_colab else models[0] | |
current_model_path = current_model.path | |
if is_colab: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model.path, | |
torch_dtype=torch.float16, | |
scheduler=scheduler, | |
safety_checker=lambda images, clip_input: (images, False), | |
) | |
else: # download all models | |
print(f"{datetime.datetime.now()} Downloading vae...") | |
vae = AutoencoderKL.from_pretrained( | |
current_model.path, subfolder="vae", torch_dtype=torch.float16 | |
) | |
for model in models: | |
try: | |
print(f"{datetime.datetime.now()} Downloading {model.name} model...") | |
unet = UNet2DConditionModel.from_pretrained( | |
model.path, subfolder="unet", torch_dtype=torch.float16 | |
) | |
model.pipe_t2i = StableDiffusionPipeline.from_pretrained( | |
model.path, | |
unet=unet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
scheduler=scheduler, | |
) | |
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model.path, | |
unet=unet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
scheduler=scheduler, | |
) | |
except Exception as e: | |
print( | |
f"{datetime.datetime.now()} Failed to load model " | |
+ model.name | |
+ ": " | |
+ str(e) | |
) | |
models.remove(model) | |
pipe = models[0].pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to(device) | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def error_str(error, title="Error"): | |
return ( | |
f"""#### {title} | |
{error}""" | |
if error | |
else "" | |
) | |
def custom_model_changed(path): | |
models[0].path = path | |
global current_model | |
current_model = models[0] | |
def on_model_change(model_name): | |
prefix = ( | |
'Enter prompt. "' | |
+ next((m.prefix for m in models if m.name == model_name), None) | |
+ '" is prefixed automatically' | |
if model_name != models[0].name | |
else "Don't forget to use the custom model prefix in the prompt!" | |
) | |
return gr.update(visible=model_name == models[0].name), gr.update( | |
placeholder=prefix | |
) | |
def inference( | |
model_name, | |
prompt, | |
guidance, | |
steps, | |
width=512, | |
height=512, | |
seed=0, | |
img=None, | |
strength=0.5, | |
neg_prompt="", | |
): | |
print(psutil.virtual_memory()) # print memory usage | |
global current_model | |
for model in models: | |
if model.name == model_name: | |
current_model = model | |
model_path = current_model.path | |
generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None | |
try: | |
if img is not None: | |
return ( | |
img_to_img( | |
model_path, | |
prompt, | |
neg_prompt, | |
img, | |
strength, | |
guidance, | |
steps, | |
width, | |
height, | |
generator, | |
), | |
None, | |
) | |
else: | |
return ( | |
txt_to_img( | |
model_path, | |
prompt, | |
neg_prompt, | |
guidance, | |
steps, | |
width, | |
height, | |
generator, | |
), | |
None, | |
) | |
except Exception as e: | |
fprint(e) | |
return None, error_str(e) | |
def txt_to_img( | |
model_path, prompt, neg_prompt, guidance, steps, width, height, generator | |
): | |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}") | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "txt2img": | |
current_model_path = model_path | |
if is_colab or current_model == custom_model: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
current_model_path, | |
torch_dtype=torch.float16, | |
scheduler=scheduler, | |
safety_checker=lambda images, clip_input: (images, False), | |
) | |
else: | |
pipe = pipe.to("cpu") | |
pipe = current_model.pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to(device) | |
last_mode = "txt2img" | |
prompt = current_model.prefix + prompt | |
result = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
# num_images_per_prompt=n_images, | |
num_inference_steps=int(steps), | |
guidance_scale=guidance, | |
width=width, | |
height=height, | |
generator=generator, | |
) | |
result.images[0] = magnifier.magnify(result.images[0]) | |
result.images[0] = magnifier.magnify(result.images[0]) | |
# save image | |
result.images[0].save( | |
"{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format( | |
saved_path, | |
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), | |
model_name, | |
prompt, | |
guidance, | |
steps, | |
width, | |
height, | |
seed, | |
) | |
) | |
return replace_nsfw_images(result) | |
def img_to_img( | |
model_path, | |
prompt, | |
neg_prompt, | |
img, | |
strength, | |
guidance, | |
steps, | |
width, | |
height, | |
generator, | |
): | |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}") | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "img2img": | |
current_model_path = model_path | |
if is_colab or current_model == custom_model: | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
current_model_path, | |
torch_dtype=torch.float16, | |
scheduler=scheduler, | |
safety_checker=lambda images, clip_input: (images, False), | |
) | |
else: | |
pipe = pipe.to("cpu") | |
pipe = current_model.pipe_i2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to(device) | |
last_mode = "img2img" | |
prompt = current_model.prefix + prompt | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
# num_images_per_prompt=n_images, | |
init_image=img, | |
num_inference_steps=int(steps), | |
strength=strength, | |
guidance_scale=guidance, | |
width=width, | |
height=height, | |
generator=generator, | |
) | |
result.images[0] = magnifier.magnify(result.images[0]) | |
result.images[0] = magnifier.magnify(result.images[0]) | |
# save image | |
result.images[0].save( | |
"{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format( | |
saved_path, | |
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), | |
model_name, | |
prompt, | |
guidance, | |
steps, | |
width, | |
height, | |
seed, | |
) | |
) | |
return replace_nsfw_images(result) | |
def replace_nsfw_images(results): | |
if is_colab: | |
return results.images[0] | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images[0] | |
if __name__ == "__main__": | |
# inference("DALL-E", "a dog", 0, 1000, 512, 512, 0, None, 0.5, "") | |
model_name = "anything v3" | |
saved_path = r"imgs" | |
if not os.path.exists(saved_path): | |
os.mkdir(saved_path) | |
n = 0 | |
while True: | |
prompt_keys = [ | |
"beautiful eyes", | |
"cumulonimbus clouds", | |
"sky", | |
"detailed fingers", | |
random.choice( | |
[ | |
"white hair", | |
"red hair", | |
"blonde hair", | |
"black hair", | |
"green hair", | |
] | |
), | |
random.choice( | |
[ | |
"blue eyes", | |
"green eyes", | |
"red eyes", | |
"black eyes", | |
"yellow eyes", | |
] | |
), | |
random.choice(["flower meadow", "garden", "city", "river", "beach"]), | |
random.choice(["Elif", "Angel"]), | |
] | |
guidance = 7.5 | |
steps = 25 | |
# width = 1024 | |
# height = 1024 | |
# width = 768 | |
# height = 1024 | |
width = 512 | |
height = 888 | |
seed = 0 | |
img = None | |
strength = 0.5 | |
neg_prompt = "" | |
inference( | |
model_name, | |
".".join(prompt_keys), | |
guidance, | |
steps, | |
width=width, | |
height=height, | |
seed=seed, | |
img=img, | |
strength=strength, | |
neg_prompt=neg_prompt, | |
) | |
n += 1 | |
fprint(n) | |