Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import glob | |
import os | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
from basicsr.utils.download_util import load_file_from_url | |
from realesrgan import RealESRGANer | |
from realesrgan.archs.srvgg_arch import SRVGGNetCompact | |
def main(): | |
"""Inference demo for Real-ESRGAN.""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-i", "--input", type=str, default="inputs", help="Input image or folder" | |
) | |
parser.add_argument( | |
"-n", | |
"--model_name", | |
type=str, | |
default="RealESRGAN_x4plus", | |
help=( | |
"Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | " | |
"realesr-animevideov3 | realesr-general-x4v3" | |
), | |
) | |
parser.add_argument( | |
"-o", "--output", type=str, default="results", help="Output folder" | |
) | |
parser.add_argument( | |
"-dn", | |
"--denoise_strength", | |
type=float, | |
default=0.5, | |
help=( | |
"Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. " | |
"Only used for the realesr-general-x4v3 model" | |
), | |
) | |
parser.add_argument( | |
"-s", | |
"--outscale", | |
type=float, | |
default=4, | |
help="The final upsampling scale of the image", | |
) | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
default=None, | |
help="[Option] Model path. Usually, you do not need to specify it", | |
) | |
parser.add_argument( | |
"--suffix", type=str, default="out", help="Suffix of the restored image" | |
) | |
parser.add_argument( | |
"-t", | |
"--tile", | |
type=int, | |
default=0, | |
help="Tile size, 0 for no tile during testing", | |
) | |
parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding") | |
parser.add_argument( | |
"--pre_pad", type=int, default=0, help="Pre padding size at each border" | |
) | |
parser.add_argument( | |
"--face_enhance", action="store_true", help="Use GFPGAN to enhance face" | |
) | |
parser.add_argument( | |
"--fp32", | |
action="store_true", | |
help="Use fp32 precision during inference. Default: fp16 (half precision).", | |
) | |
parser.add_argument( | |
"--alpha_upsampler", | |
type=str, | |
default="realesrgan", | |
help="The upsampler for the alpha channels. Options: realesrgan | bicubic", | |
) | |
parser.add_argument( | |
"--ext", | |
type=str, | |
default="auto", | |
help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs", | |
) | |
parser.add_argument( | |
"-g", | |
"--gpu-id", | |
type=int, | |
default=None, | |
help="gpu device to use (default=None) can be 0,1,2 for multi-gpu", | |
) | |
args = parser.parse_args() | |
# determine models according to model names | |
args.model_name = args.model_name.split(".")[0] | |
if args.model_name == "RealESRGAN_x4plus": # x4 RRDBNet model | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=4, | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" | |
] | |
elif args.model_name == "RealESRNet_x4plus": # x4 RRDBNet model | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=4, | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth" | |
] | |
elif ( | |
args.model_name == "RealESRGAN_x4plus_anime_6B" | |
): # x4 RRDBNet model with 6 blocks | |
model = RRDBNet( | |
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4 | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" | |
] | |
elif args.model_name == "RealESRGAN_x2plus": # x2 RRDBNet model | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=2, | |
) | |
netscale = 2 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" | |
] | |
elif args.model_name == "realesr-animevideov3": # x4 VGG-style model (XS size) | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=16, | |
upscale=4, | |
act_type="prelu", | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth" | |
] | |
elif args.model_name == "realesr-general-x4v3": # x4 VGG-style model (S size) | |
model = SRVGGNetCompact( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_conv=32, | |
upscale=4, | |
act_type="prelu", | |
) | |
netscale = 4 | |
file_url = [ | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth", | |
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", | |
] | |
# determine model paths | |
if args.model_path is not None: | |
model_path = args.model_path | |
else: | |
model_path = os.path.join("weights", args.model_name + ".pth") | |
if not os.path.isfile(model_path): | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
for url in file_url: | |
# model_path will be updated | |
model_path = load_file_from_url( | |
url=url, | |
model_dir=os.path.join(ROOT_DIR, "weights"), | |
progress=True, | |
file_name=None, | |
) | |
# use dni to control the denoise strength | |
dni_weight = None | |
if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1: | |
wdn_model_path = model_path.replace( | |
"realesr-general-x4v3", "realesr-general-wdn-x4v3" | |
) | |
model_path = [model_path, wdn_model_path] | |
dni_weight = [args.denoise_strength, 1 - args.denoise_strength] | |
# restorer | |
upsampler = RealESRGANer( | |
scale=netscale, | |
model_path=model_path, | |
dni_weight=dni_weight, | |
model=model, | |
tile=args.tile, | |
tile_pad=args.tile_pad, | |
pre_pad=args.pre_pad, | |
half=not args.fp32, | |
gpu_id=args.gpu_id, | |
) | |
if args.face_enhance: # Use GFPGAN for face enhancement | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth", | |
upscale=args.outscale, | |
arch="clean", | |
channel_multiplier=2, | |
bg_upsampler=upsampler, | |
) | |
os.makedirs(args.output, exist_ok=True) | |
if os.path.isfile(args.input): | |
paths = [args.input] | |
else: | |
paths = sorted(glob.glob(os.path.join(args.input, "*"))) | |
for idx, path in enumerate(paths): | |
imgname, extension = os.path.splitext(os.path.basename(path)) | |
print("Testing", idx, imgname) | |
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = "RGBA" | |
else: | |
img_mode = None | |
try: | |
if args.face_enhance: | |
_, _, output = face_enhancer.enhance( | |
img, has_aligned=False, only_center_face=False, paste_back=True | |
) | |
else: | |
output, _ = upsampler.enhance(img, outscale=args.outscale) | |
except RuntimeError as error: | |
print("Error", error) | |
print( | |
"If you encounter CUDA out of memory, try to set --tile with a smaller number." | |
) | |
else: | |
if args.ext == "auto": | |
extension = extension[1:] | |
else: | |
extension = args.ext | |
if img_mode == "RGBA": # RGBA images should be saved in png format | |
extension = "png" | |
if args.suffix == "": | |
save_path = os.path.join(args.output, f"{imgname}.{extension}") | |
else: | |
save_path = os.path.join( | |
args.output, f"{imgname}_{args.suffix}.{extension}" | |
) | |
cv2.imwrite(save_path, output) | |
if __name__ == "__main__": | |
main() | |