Spaces:
Sleeping
Sleeping
Rehman1603
commited on
Upload 5 files
Browse files- app.py +49 -0
- demo.PNG +0 -0
- encoding.py +37 -0
- main.py +104 -0
- mcq.py +305 -0
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import easyocr
|
3 |
+
import gradio as gr
|
4 |
+
from main import predict_mcq
|
5 |
+
|
6 |
+
reader = easyocr.Reader(['th','en'])
|
7 |
+
def ocr_with_easy(image):
|
8 |
+
#gray_scale_image=get_grayscale(img)
|
9 |
+
#thresholding(gray_scale_image)
|
10 |
+
cv2.imwrite('image.png',image)
|
11 |
+
image=cv2.imread('image.png')
|
12 |
+
bounds = reader.readtext(image,paragraph="False",detail = 0)
|
13 |
+
bounds = ''.join(bounds)
|
14 |
+
return bounds
|
15 |
+
|
16 |
+
def put_in_single_list(data):
|
17 |
+
result=[]
|
18 |
+
final_result=[]
|
19 |
+
for i in data:
|
20 |
+
result.append(i.get("question_statement"))
|
21 |
+
result.append(i.get("answer"))
|
22 |
+
result.append(i.get("options"))
|
23 |
+
final_result.append(result)
|
24 |
+
return final_result
|
25 |
+
|
26 |
+
def MCQGenerator(image):
|
27 |
+
I_text=ocr_with_easy(image)
|
28 |
+
text={
|
29 |
+
"input_text":I_text
|
30 |
+
}
|
31 |
+
Mcqs=predict_mcq(text)
|
32 |
+
data=Mcqs.get('questions')
|
33 |
+
print(data)
|
34 |
+
if data is not None:
|
35 |
+
#final_result=put_in_single_list(data)
|
36 |
+
statement=""
|
37 |
+
answer=""
|
38 |
+
options=""
|
39 |
+
for mcq in data:
|
40 |
+
statement+=mcq.get('question_statement')+','
|
41 |
+
answer+=mcq.get('answer')+','
|
42 |
+
options+=mcq.get('options')[0]+','+mcq.get('options')[1]+','+mcq.get('options')[2]+','
|
43 |
+
return statement,answer,options
|
44 |
+
else:
|
45 |
+
return "Null","Null","Null"
|
46 |
+
|
47 |
+
iface=gr.Interface(fn=MCQGenerator,inputs='image',outputs=[gr.components.Textbox(label="Question"),gr.components.Textbox(label="Answer"),gr.components.Textbox(label="Options")],
|
48 |
+
examples=[['demo.PNG']])
|
49 |
+
iface.launch(debug=True)
|
demo.PNG
ADDED
encoding.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
3 |
+
|
4 |
+
|
5 |
+
def greedy_decoding (inp_ids,attn_mask,model,tokenizer):
|
6 |
+
greedy_output = model.generate(input_ids=inp_ids, attention_mask=attn_mask, max_length=256)
|
7 |
+
Question = tokenizer.decode(greedy_output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
8 |
+
return Question.strip().capitalize()
|
9 |
+
|
10 |
+
|
11 |
+
def beam_search_decoding (inp_ids,attn_mask,model,tokenizer):
|
12 |
+
beam_output = model.generate(input_ids=inp_ids,
|
13 |
+
attention_mask=attn_mask,
|
14 |
+
max_length=256,
|
15 |
+
num_beams=10,
|
16 |
+
num_return_sequences=3,
|
17 |
+
no_repeat_ngram_size=2,
|
18 |
+
early_stopping=True
|
19 |
+
)
|
20 |
+
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in
|
21 |
+
beam_output]
|
22 |
+
return [Question.strip().capitalize() for Question in Questions]
|
23 |
+
|
24 |
+
|
25 |
+
def topkp_decoding (inp_ids,attn_mask,model,tokenizer):
|
26 |
+
topkp_output = model.generate(input_ids=inp_ids,
|
27 |
+
attention_mask=attn_mask,
|
28 |
+
max_length=256,
|
29 |
+
do_sample=True,
|
30 |
+
top_k=40,
|
31 |
+
top_p=0.80,
|
32 |
+
num_return_sequences=3,
|
33 |
+
no_repeat_ngram_size=2,
|
34 |
+
early_stopping=True
|
35 |
+
)
|
36 |
+
Questions = [tokenizer.decode(out, skip_special_tokens=True,clean_up_tokenization_spaces=True) for out in topkp_output]
|
37 |
+
return [Question.strip().capitalize() for Question in Questions]
|
main.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np # linear algebra
|
2 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
6 |
+
import random
|
7 |
+
import spacy
|
8 |
+
import zipfile
|
9 |
+
import os
|
10 |
+
os.system('pip install git+https://github.com/boudinfl/pke.git')
|
11 |
+
os.system('python -m nltk.downloader universal_tagset')
|
12 |
+
os.system('python -m spacy download en')
|
13 |
+
os.system('wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz')
|
14 |
+
os.system('tar -xvf s2v_reddit_2015_md.tar.gz')
|
15 |
+
os.system('python -m spacy download en_core_web_sm')
|
16 |
+
import git
|
17 |
+
import json
|
18 |
+
from sense2vec import Sense2Vec
|
19 |
+
import requests
|
20 |
+
from collections import OrderedDict
|
21 |
+
import string
|
22 |
+
import pke
|
23 |
+
import nltk
|
24 |
+
import numpy
|
25 |
+
import en_core_web_sm
|
26 |
+
from nltk import FreqDist
|
27 |
+
nltk.download('brown', quiet=True, force=True)
|
28 |
+
nltk.download('stopwords', quiet=True, force=True)
|
29 |
+
nltk.download('popular', quiet=True, force=True)
|
30 |
+
from nltk.corpus import stopwords
|
31 |
+
from nltk.corpus import brown
|
32 |
+
from similarity.normalized_levenshtein import NormalizedLevenshtein
|
33 |
+
from nltk.tokenize import sent_tokenize
|
34 |
+
from flashtext import KeywordProcessor
|
35 |
+
from encoding import beam_search_decoding
|
36 |
+
from mcq import tokenize_sentences
|
37 |
+
from mcq import get_keywords
|
38 |
+
from mcq import get_sentences_for_keyword
|
39 |
+
from mcq import generate_questions_mcq
|
40 |
+
from mcq import generate_normal_questions
|
41 |
+
import time
|
42 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
43 |
+
model = T5ForConditionalGeneration.from_pretrained('Parth/result')
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
model.to(device)
|
46 |
+
# model.eval()
|
47 |
+
device = device
|
48 |
+
model = model
|
49 |
+
nlp = spacy.load('en_core_web_sm')
|
50 |
+
s2v = Sense2Vec().from_disk('s2v_old')
|
51 |
+
fdist = FreqDist(brown.words())
|
52 |
+
normalized_levenshtein = NormalizedLevenshtein()
|
53 |
+
def set_seed(seed):
|
54 |
+
numpy.random.seed(seed)
|
55 |
+
torch.manual_seed(seed)
|
56 |
+
if torch.cuda.is_available():
|
57 |
+
torch.cuda.manual_seed_all(seed)
|
58 |
+
set_seed(42)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def predict_mcq(payload):
|
63 |
+
start = time.time()
|
64 |
+
inp = {
|
65 |
+
"input_text": payload.get("input_text"),
|
66 |
+
"max_questions": payload.get("max_questions", 10)
|
67 |
+
}
|
68 |
+
|
69 |
+
text = inp['input_text']
|
70 |
+
sentences = tokenize_sentences(text)
|
71 |
+
joiner = " "
|
72 |
+
modified_text = joiner.join(sentences)
|
73 |
+
|
74 |
+
|
75 |
+
keywords = get_keywords(nlp,modified_text,inp['max_questions'],s2v,fdist,normalized_levenshtein,len(sentences) )
|
76 |
+
|
77 |
+
|
78 |
+
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
|
79 |
+
|
80 |
+
for k in keyword_sentence_mapping.keys():
|
81 |
+
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
|
82 |
+
keyword_sentence_mapping[k] = text_snippet
|
83 |
+
|
84 |
+
|
85 |
+
final_output = {}
|
86 |
+
|
87 |
+
if len(keyword_sentence_mapping.keys()) == 0:
|
88 |
+
return final_output
|
89 |
+
else:
|
90 |
+
try:
|
91 |
+
generated_questions = generate_questions_mcq(keyword_sentence_mapping,device,tokenizer,model,s2v,normalized_levenshtein)
|
92 |
+
|
93 |
+
except:
|
94 |
+
return final_output
|
95 |
+
end = time.time()
|
96 |
+
|
97 |
+
final_output["statement"] = modified_text
|
98 |
+
final_output["questions"] = generated_questions["questions"]
|
99 |
+
final_output["time_taken"] = end-start
|
100 |
+
|
101 |
+
if torch.device=='cuda':
|
102 |
+
torch.cuda.empty_cache()
|
103 |
+
|
104 |
+
return final_output
|
mcq.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np # linear algebra
|
2 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
6 |
+
import random
|
7 |
+
import spacy
|
8 |
+
import zipfile
|
9 |
+
import os
|
10 |
+
import json
|
11 |
+
from sense2vec import Sense2Vec
|
12 |
+
import requests
|
13 |
+
from collections import OrderedDict
|
14 |
+
import string
|
15 |
+
import pke
|
16 |
+
import nltk
|
17 |
+
from nltk import FreqDist
|
18 |
+
nltk.download('brown')
|
19 |
+
nltk.download('stopwords')
|
20 |
+
nltk.download('popular')
|
21 |
+
from nltk.corpus import stopwords
|
22 |
+
from nltk.corpus import brown
|
23 |
+
from similarity.normalized_levenshtein import NormalizedLevenshtein
|
24 |
+
from nltk.tokenize import sent_tokenize
|
25 |
+
from flashtext import KeywordProcessor
|
26 |
+
|
27 |
+
def MCQs_available(word,s2v):
|
28 |
+
word = word.replace(" ", "_")
|
29 |
+
sense = s2v.get_best_sense(word)
|
30 |
+
if sense is not None:
|
31 |
+
return True
|
32 |
+
else:
|
33 |
+
return False
|
34 |
+
|
35 |
+
|
36 |
+
def edits(word):
|
37 |
+
"All edits that are one edit away from `word`."
|
38 |
+
letters = 'abcdefghijklmnopqrstuvwxyz '+string.punctuation
|
39 |
+
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
40 |
+
deletes = [L + R[1:] for L, R in splits if R]
|
41 |
+
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
42 |
+
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
43 |
+
inserts = [L + c + R for L, R in splits for c in letters]
|
44 |
+
return set(deletes + transposes + replaces + inserts)
|
45 |
+
|
46 |
+
|
47 |
+
def sense2vec_get_words(word,s2v):
|
48 |
+
output = []
|
49 |
+
|
50 |
+
word_preprocessed = word.translate(word.maketrans("","", string.punctuation))
|
51 |
+
word_preprocessed = word_preprocessed.lower()
|
52 |
+
|
53 |
+
word_edits = edits(word_preprocessed)
|
54 |
+
|
55 |
+
word = word.replace(" ", "_")
|
56 |
+
|
57 |
+
sense = s2v.get_best_sense(word)
|
58 |
+
most_similar = s2v.most_similar(sense, n=15)
|
59 |
+
|
60 |
+
compare_list = [word_preprocessed]
|
61 |
+
for each_word in most_similar:
|
62 |
+
append_word = each_word[0].split("|")[0].replace("_", " ")
|
63 |
+
append_word = append_word.strip()
|
64 |
+
append_word_processed = append_word.lower()
|
65 |
+
append_word_processed = append_word_processed.translate(append_word_processed.maketrans("","", string.punctuation))
|
66 |
+
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits:
|
67 |
+
output.append(append_word.title())
|
68 |
+
compare_list.append(append_word_processed)
|
69 |
+
|
70 |
+
|
71 |
+
out = list(OrderedDict.fromkeys(output))
|
72 |
+
|
73 |
+
return out
|
74 |
+
|
75 |
+
def get_options(answer,s2v):
|
76 |
+
distractors =[]
|
77 |
+
|
78 |
+
try:
|
79 |
+
distractors = sense2vec_get_words(answer,s2v)
|
80 |
+
if len(distractors) > 0:
|
81 |
+
print(" Sense2vec_distractors successful for word : ", answer)
|
82 |
+
return distractors,"sense2vec"
|
83 |
+
except:
|
84 |
+
print (" Sense2vec_distractors failed for word : ",answer)
|
85 |
+
|
86 |
+
|
87 |
+
return distractors,"None"
|
88 |
+
|
89 |
+
def tokenize_sentences(text):
|
90 |
+
sentences = [sent_tokenize(text)]
|
91 |
+
sentences = [y for x in sentences for y in x]
|
92 |
+
# Remove any short sentences less than 20 letters.
|
93 |
+
sentences = [sentence.strip() for sentence in sentences if len(sentence) > 20]
|
94 |
+
return sentences
|
95 |
+
|
96 |
+
|
97 |
+
def get_sentences_for_keyword(keywords, sentences):
|
98 |
+
keyword_processor = KeywordProcessor()
|
99 |
+
keyword_sentences = {}
|
100 |
+
for word in keywords:
|
101 |
+
word = word.strip()
|
102 |
+
keyword_sentences[word] = []
|
103 |
+
keyword_processor.add_keyword(word)
|
104 |
+
for sentence in sentences:
|
105 |
+
keywords_found = keyword_processor.extract_keywords(sentence)
|
106 |
+
for key in keywords_found:
|
107 |
+
keyword_sentences[key].append(sentence)
|
108 |
+
|
109 |
+
for key in keyword_sentences.keys():
|
110 |
+
values = keyword_sentences[key]
|
111 |
+
values = sorted(values, key=len, reverse=True)
|
112 |
+
keyword_sentences[key] = values
|
113 |
+
|
114 |
+
delete_keys = []
|
115 |
+
for k in keyword_sentences.keys():
|
116 |
+
if len(keyword_sentences[k]) == 0:
|
117 |
+
delete_keys.append(k)
|
118 |
+
for del_key in delete_keys:
|
119 |
+
del keyword_sentences[del_key]
|
120 |
+
|
121 |
+
return keyword_sentences
|
122 |
+
|
123 |
+
|
124 |
+
def is_far(words_list,currentword,thresh,normalized_levenshtein):
|
125 |
+
threshold = thresh
|
126 |
+
score_list =[]
|
127 |
+
for word in words_list:
|
128 |
+
score_list.append(normalized_levenshtein.distance(word.lower(),currentword.lower()))
|
129 |
+
if min(score_list)>=threshold:
|
130 |
+
return True
|
131 |
+
else:
|
132 |
+
return False
|
133 |
+
|
134 |
+
def filter_phrases(phrase_keys,max,normalized_levenshtein ):
|
135 |
+
filtered_phrases =[]
|
136 |
+
if len(phrase_keys)>0:
|
137 |
+
filtered_phrases.append(phrase_keys[0])
|
138 |
+
for ph in phrase_keys[1:]:
|
139 |
+
if is_far(filtered_phrases,ph,0.7,normalized_levenshtein ):
|
140 |
+
filtered_phrases.append(ph)
|
141 |
+
if len(filtered_phrases)>=max:
|
142 |
+
break
|
143 |
+
return filtered_phrases
|
144 |
+
|
145 |
+
|
146 |
+
def get_nouns_multipartite(text):
|
147 |
+
out = []
|
148 |
+
|
149 |
+
extractor = pke.unsupervised.MultipartiteRank()
|
150 |
+
extractor.load_document(input=text, language='en')
|
151 |
+
pos = {'PROPN', 'NOUN'}
|
152 |
+
stoplist = list(string.punctuation)
|
153 |
+
stoplist += stopwords.words('english')
|
154 |
+
extractor.candidate_selection(pos=pos)
|
155 |
+
# 4. build the Multipartite graph and rank candidates using random walk,
|
156 |
+
# alpha controls the weight adjustment mechanism, see TopicRank for
|
157 |
+
# threshold/method parameters.
|
158 |
+
try:
|
159 |
+
extractor.candidate_weighting(alpha=1.1,
|
160 |
+
threshold=0.75,
|
161 |
+
method='average')
|
162 |
+
except:
|
163 |
+
return out
|
164 |
+
|
165 |
+
keyphrases = extractor.get_n_best(n=10)
|
166 |
+
|
167 |
+
for key in keyphrases:
|
168 |
+
out.append(key[0])
|
169 |
+
|
170 |
+
return out
|
171 |
+
|
172 |
+
|
173 |
+
def get_phrases(doc):
|
174 |
+
phrases={}
|
175 |
+
for np in doc.noun_chunks:
|
176 |
+
phrase =np.text
|
177 |
+
len_phrase = len(phrase.split())
|
178 |
+
if len_phrase > 1:
|
179 |
+
if phrase not in phrases:
|
180 |
+
phrases[phrase]=1
|
181 |
+
else:
|
182 |
+
phrases[phrase]=phrases[phrase]+1
|
183 |
+
|
184 |
+
phrase_keys=list(phrases.keys())
|
185 |
+
phrase_keys = sorted(phrase_keys, key= lambda x: len(x),reverse=True)
|
186 |
+
phrase_keys=phrase_keys[:50]
|
187 |
+
return phrase_keys
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
def get_keywords(nlp,text,max_keywords,s2v,fdist,normalized_levenshtein,no_of_sentences):
|
192 |
+
doc = nlp(text)
|
193 |
+
max_keywords = int(max_keywords)
|
194 |
+
|
195 |
+
keywords = get_nouns_multipartite(text)
|
196 |
+
keywords = sorted(keywords, key=lambda x: fdist[x])
|
197 |
+
keywords = filter_phrases(keywords, max_keywords,normalized_levenshtein )
|
198 |
+
|
199 |
+
phrase_keys = get_phrases(doc)
|
200 |
+
filtered_phrases = filter_phrases(phrase_keys, max_keywords,normalized_levenshtein )
|
201 |
+
|
202 |
+
total_phrases = keywords + filtered_phrases
|
203 |
+
|
204 |
+
total_phrases_filtered = filter_phrases(total_phrases, min(max_keywords, 2*no_of_sentences),normalized_levenshtein )
|
205 |
+
|
206 |
+
|
207 |
+
answers = []
|
208 |
+
for answer in total_phrases_filtered:
|
209 |
+
if answer not in answers and MCQs_available(answer,s2v):
|
210 |
+
answers.append(answer)
|
211 |
+
|
212 |
+
answers = answers[:max_keywords]
|
213 |
+
return answers
|
214 |
+
|
215 |
+
|
216 |
+
def generate_questions_mcq(keyword_sent_mapping,device,tokenizer,model,sense2vec,normalized_levenshtein):
|
217 |
+
batch_text = []
|
218 |
+
answers = keyword_sent_mapping.keys()
|
219 |
+
for answer in answers:
|
220 |
+
txt = keyword_sent_mapping[answer]
|
221 |
+
context = "context: " + txt
|
222 |
+
text = context + " " + "answer: " + answer + " </s>"
|
223 |
+
batch_text.append(text)
|
224 |
+
|
225 |
+
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
|
226 |
+
|
227 |
+
|
228 |
+
print ("Running model for generation")
|
229 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
230 |
+
|
231 |
+
with torch.no_grad():
|
232 |
+
outs = model.generate(input_ids=input_ids,
|
233 |
+
attention_mask=attention_masks,
|
234 |
+
max_length=150)
|
235 |
+
|
236 |
+
output_array ={}
|
237 |
+
output_array["questions"] =[]
|
238 |
+
# print(outs)
|
239 |
+
for index, val in enumerate(answers):
|
240 |
+
individual_question ={}
|
241 |
+
out = outs[index, :]
|
242 |
+
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
243 |
+
|
244 |
+
Question = dec.replace("question:", "")
|
245 |
+
Question = Question.strip()
|
246 |
+
individual_question["question_statement"] = Question
|
247 |
+
individual_question["question_type"] = "MCQ"
|
248 |
+
individual_question["answer"] = val
|
249 |
+
individual_question["id"] = index+1
|
250 |
+
individual_question["options"], individual_question["options_algorithm"] = get_options(val, sense2vec)
|
251 |
+
|
252 |
+
individual_question["options"] = filter_phrases(individual_question["options"], 10,normalized_levenshtein)
|
253 |
+
index = 3
|
254 |
+
individual_question["extra_options"]= individual_question["options"][index:]
|
255 |
+
individual_question["options"] = individual_question["options"][:index]
|
256 |
+
individual_question["context"] = keyword_sent_mapping[val]
|
257 |
+
|
258 |
+
if len(individual_question["options"])>0:
|
259 |
+
output_array["questions"].append(individual_question)
|
260 |
+
|
261 |
+
return output_array
|
262 |
+
|
263 |
+
def generate_normal_questions(keyword_sent_mapping,device,tokenizer,model): #for normal one word questions
|
264 |
+
batch_text = []
|
265 |
+
answers = keyword_sent_mapping.keys()
|
266 |
+
for answer in answers:
|
267 |
+
txt = keyword_sent_mapping[answer]
|
268 |
+
context = "context: " + txt
|
269 |
+
text = context + " " + "answer: " + answer + " </s>"
|
270 |
+
batch_text.append(text)
|
271 |
+
|
272 |
+
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
|
273 |
+
|
274 |
+
|
275 |
+
print ("Running model for generation")
|
276 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
277 |
+
|
278 |
+
with torch.no_grad():
|
279 |
+
outs = model.generate(input_ids=input_ids,
|
280 |
+
attention_mask=attention_masks,
|
281 |
+
max_length=150)
|
282 |
+
|
283 |
+
output_array ={}
|
284 |
+
output_array["questions"] =[]
|
285 |
+
|
286 |
+
for index, val in enumerate(answers):
|
287 |
+
individual_quest= {}
|
288 |
+
out = outs[index, :]
|
289 |
+
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
290 |
+
|
291 |
+
Question= dec.replace('question:', '')
|
292 |
+
Question= Question.strip()
|
293 |
+
|
294 |
+
individual_quest['Question']= Question
|
295 |
+
individual_quest['Answer']= val
|
296 |
+
individual_quest["id"] = index+1
|
297 |
+
individual_quest["context"] = keyword_sent_mapping[val]
|
298 |
+
|
299 |
+
output_array["questions"].append(individual_quest)
|
300 |
+
|
301 |
+
return output_array
|
302 |
+
|
303 |
+
def random_choice():
|
304 |
+
a = random.choice([0,1])
|
305 |
+
return bool(a)
|