Spaces:
Runtime error
Runtime error
File size: 5,906 Bytes
f195437 dfc0c1a f195437 e00f944 60def5b e00f944 3810a85 f195437 dfc0c1a f195437 e00f944 f195437 e00f944 f195437 e00f944 f195437 e00f944 f195437 e00f944 f195437 e00f944 f195437 dfc0c1a f195437 e00f944 f195437 dfc0c1a f195437 dfc0c1a f195437 dfc0c1a f195437 dfc0c1a f195437 60def5b 1c3a875 60def5b 1c3a875 60def5b e00f944 f195437 e00f944 f195437 e00f944 f195437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import cv2
import numpy as np
from typing import Dict, List
import colorsys
from pytoshop import layers
from pytoshop.enums import BlendMode
from pytoshop.core import PsdFile
from modules.constants import DEFAULT_COLOR, DEFAULT_PIXEL_SIZE
def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]:
if isinstance(seg, np.ndarray) and seg.dtype == np.bool_:
return seg.astype(np.uint8) * 255
else:
return seg.astype(np.uint8)
def generate_random_color():
h = np.random.randint(0, 360)
s = np.random.randint(70, 100) / 100
v = np.random.randint(70, 100) / 100
r, g, b = colorsys.hsv_to_rgb(h/360, s, v)
return int(r * 255), int(g * 255), int(b * 255)
def create_base_layer(image: np.ndarray):
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
return [rgba_image]
def create_mask_layers(
image: np.ndarray,
masks: List
):
layer_list = []
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for info in sorted_masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)
layer_list.append(rgba_image)
return layer_list
def create_mask_gallery(
image: np.ndarray,
masks: List
):
mask_array_list = []
label_list = []
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for index, info in enumerate(sorted_masks):
rle = info['segmentation']
mask = decode_to_mask(rle)
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)
mask_array_list.append(rgba_image)
label_list.append(f'Part {index}')
return [[img, label] for img, label in zip(mask_array_list, label_list)]
def create_mask_combined_images(
image: np.ndarray,
masks: List
):
final_result = np.zeros_like(image)
used_colors = set()
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
while True:
color = generate_random_color()
if color not in used_colors:
used_colors.add(color)
break
colored_mask = np.zeros_like(image)
colored_mask[mask > 0] = color
blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0)
final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result)
combined_image = np.where(final_result != 0, final_result, image)
hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV)
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255)
enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return [enhanced, "Masked"]
def create_mask_pixelized_image(
image: np.ndarray,
masks: List,
pixel_size: int = DEFAULT_PIXEL_SIZE
) -> np.ndarray:
final_result = image.copy()
def pixelize(img: np.ndarray, mask: np.ndarray[np.uint8], pixel_size: int):
h, w = img.shape[:2]
temp = cv2.resize(img, (w // pixel_size, h // pixel_size), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
return np.where(mask[:, :, np.newaxis] > 0, pixelated, img)
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
pixelated_segment = pixelize(final_result, mask, pixel_size)
final_result = np.where(mask[:, :, np.newaxis] > 0, pixelated_segment, final_result)
return final_result
def create_solid_color_mask_image(
image: np.ndarray,
masks: List,
color_hex: str = DEFAULT_COLOR
) -> np.ndarray:
final_result = image.copy()
def hex_to_bgr(hex_color: str):
hex_color = hex_color.lstrip('#')
rgb = tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4))
return rgb[::-1]
color_bgr = hex_to_bgr(color_hex)
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
solid_color_mask = np.full(image.shape, color_bgr, dtype=np.uint8)
final_result = np.where(mask[:, :, np.newaxis] > 0, solid_color_mask, final_result)
return final_result
def insert_psd_layer(
psd: PsdFile,
image_data: np.ndarray,
layer_name: str,
blending_mode: BlendMode
):
channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)]
layer_record = layers.LayerRecord(
channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]},
top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1],
blend_mode=blending_mode,
name=layer_name,
opacity=255,
)
psd.layer_and_mask_info.layer_info.layer_records.append(layer_record)
return psd
def save_psd(
input_image_data: np.ndarray,
layer_data: List,
layer_names: List,
blending_modes: List,
output_path: str
):
psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1])
psd_file.layer_and_mask_info.layer_info.layer_records.clear()
for index, layer in enumerate(layer_data):
psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index])
with open(output_path, 'wb') as output_file:
psd_file.write(output_file)
def save_psd_with_masks(
image: np.ndarray,
masks: List,
output_path: str
):
original_layer = create_base_layer(image)
mask_layers = create_mask_layers(image, masks)
names = [f'Part {i}' for i in range(len(mask_layers))]
modes = [BlendMode.normal] * (len(mask_layers)+1)
save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)
|