Spaces:
Runtime error
Runtime error
File size: 8,262 Bytes
f195437 237a214 dfc0c1a f195437 e00f944 60def5b e00f944 3810a85 237a214 3810a85 f195437 237a214 dfc0c1a f195437 237a214 f195437 e00f944 237a214 f195437 e00f944 f195437 e00f944 237a214 3d1dda1 237a214 f195437 e00f944 f195437 e00f944 237a214 3d1dda1 237a214 3d1dda1 237a214 f195437 dfc0c1a f195437 e00f944 f195437 dfc0c1a f195437 dfc0c1a f195437 dfc0c1a f195437 dfc0c1a f195437 60def5b 237a214 60def5b 1c3a875 237a214 60def5b 237a214 60def5b 1c3a875 237a214 60def5b e00f944 237a214 f195437 e00f944 237a214 e00f944 f195437 237a214 f195437 237a214 f195437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import cv2
import numpy as np
from typing import Dict, List, Tuple
import colorsys
from pytoshop import layers
from pytoshop.enums import BlendMode
from pytoshop.core import PsdFile
from modules.constants import DEFAULT_COLOR, DEFAULT_PIXEL_SIZE
def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]:
"""Decode to uint8 mask from bool to deal with as images"""
if isinstance(seg, np.ndarray) and seg.dtype == np.bool_:
return seg.astype(np.uint8) * 255
else:
return seg.astype(np.uint8)
def generate_random_color() -> Tuple[int, int, int]:
"""Generate random color in RGB format"""
h = np.random.randint(0, 360)
s = np.random.randint(70, 100) / 100
v = np.random.randint(70, 100) / 100
r, g, b = colorsys.hsv_to_rgb(h/360, s, v)
return int(r * 255), int(g * 255), int(b * 255)
def create_base_layer(image: np.ndarray) -> List[np.ndarray]:
"""Create a base layer from the image. Used to keep original image"""
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
return [rgba_image]
def create_mask_layers(
image: np.ndarray,
masks: List[Dict]
) -> List[np.ndarray]:
"""
Create list of images with mask data. Masks are sorted by area in descending order.
Args:
image: Original image
masks: List of mask data
Returns:
List of RGBA images
"""
layer_list = []
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for info in sorted_masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)
layer_list.append(rgba_image)
return layer_list
def create_mask_gallery(
image: np.ndarray,
masks: List[Dict]
) -> List:
"""
Create list of images with mask data. Masks are sorted by area in descending order. Specially used for gradio
Gallery component. each element has image and label, where label is the part number.
Args:
image: Original image
masks: List of mask data
Returns:
List of [image, label] pairs
"""
mask_array_list = []
label_list = []
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for index, info in enumerate(sorted_masks):
rle = info['segmentation']
mask = decode_to_mask(rle)
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)
mask_array_list.append(rgba_image)
label_list.append(f'Part {index}')
return [[img, label] for img, label in zip(mask_array_list, label_list)]
def create_mask_combined_images(
image: np.ndarray,
masks: List[Dict]
) -> List:
"""
Create an image with colored masks. Each mask is colored with a random color and blended with the original image.
Args:
image: Original image
masks: List of mask data
Returns:
[image, label] pairs
"""
final_result = np.zeros_like(image)
used_colors = set()
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
while True:
color = generate_random_color()
if color not in used_colors:
used_colors.add(color)
break
colored_mask = np.zeros_like(image)
colored_mask[mask > 0] = color
blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0)
final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result)
combined_image = np.where(final_result != 0, final_result, image)
hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV)
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255)
enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return [enhanced, "Masked"]
def create_mask_pixelized_image(
image: np.ndarray,
masks: List[Dict],
pixel_size: int = DEFAULT_PIXEL_SIZE
) -> np.ndarray:
"""
Create a pixelized image with mask.
Args:
image: Original image
masks: List of mask data
pixel_size: Pixel size for pixelization
Returns:
Pixelized image
"""
final_result = image.copy()
def pixelize(img: np.ndarray, mask: np.ndarray[np.uint8], pixel_size: int):
h, w = img.shape[:2]
temp = cv2.resize(img, (w // pixel_size, h // pixel_size), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
return np.where(mask[:, :, np.newaxis] > 0, pixelated, img)
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
pixelated_segment = pixelize(final_result, mask, pixel_size)
final_result = np.where(mask[:, :, np.newaxis] > 0, pixelated_segment, final_result)
return final_result
def create_solid_color_mask_image(
image: np.ndarray,
masks: List[Dict],
color_hex: str = DEFAULT_COLOR
) -> np.ndarray:
"""
Create an image with solid color masks.
Args:
image: Original image
masks: List of mask data
color_hex: Hex color code
Returns:
Image with solid color masks
"""
final_result = image.copy()
def hex_to_bgr(hex_color: str):
hex_color = hex_color.lstrip('#')
rgb = tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4))
return rgb[::-1]
color_bgr = hex_to_bgr(color_hex)
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
solid_color_mask = np.full(image.shape, color_bgr, dtype=np.uint8)
final_result = np.where(mask[:, :, np.newaxis] > 0, solid_color_mask, final_result)
return final_result
def insert_psd_layer(
psd: PsdFile,
image_data: np.ndarray,
layer_name: str,
blending_mode: BlendMode
) -> PsdFile:
"""
Insert a layer into the PSD file using pytoshop
Args:
psd: PSD file object from the pytoshop
image_data: Image data
layer_name: Layer name
blending_mode: Blending mode from pytoshop
Returns:
Updated PSD file object
"""
channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)]
layer_record = layers.LayerRecord(
channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]},
top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1],
blend_mode=blending_mode,
name=layer_name,
opacity=255,
)
psd.layer_and_mask_info.layer_info.layer_records.append(layer_record)
return psd
def save_psd(
input_image_data: np.ndarray,
layer_data: List,
layer_names: List,
blending_modes: List,
output_path: str
):
"""
Save the image with multiple layers as a PSD file
Args:
input_image_data: Original image data
layer_data: List of images to be saved as layers
layer_names: List of layer names
blending_modes: List of blending modes
output_path: Output path for the PSD file
"""
psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1])
psd_file.layer_and_mask_info.layer_info.layer_records.clear()
for index, layer in enumerate(layer_data):
psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index])
with open(output_path, 'wb') as output_file:
psd_file.write(output_file)
def save_psd_with_masks(
image: np.ndarray,
masks: List[Dict],
output_path: str
):
"""
Save the psd file with masks data.
Args:
image: Original image
masks: List of mask data
output_path: Output path for the PSD file
"""
original_layer = create_base_layer(image)
mask_layers = create_mask_layers(image, masks)
names = [f'Part {i}' for i in range(len(mask_layers))]
modes = [BlendMode.normal] * (len(mask_layers)+1)
save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)
|