RanjithkumarPanjabikesan
commited on
Commit
•
1b46a9b
1
Parent(s):
55461a2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
depth_estimator = pipeline(task="depth-estimation",
|
3 |
+
model="Intel/dpt-hybrid-midas")
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
def launch(input_image):
|
10 |
+
out = depth_estimator(input_image)
|
11 |
+
|
12 |
+
# resize the prediction
|
13 |
+
prediction = torch.nn.functional.interpolate(
|
14 |
+
out["predicted_depth"].unsqueeze(1),
|
15 |
+
size=input_image.size[::-1],
|
16 |
+
mode="bicubic",
|
17 |
+
align_corners=False,
|
18 |
+
)
|
19 |
+
# normalize the prediction
|
20 |
+
output = prediction.squeeze().numpy()
|
21 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
22 |
+
depth = Image.fromarray(formatted)
|
23 |
+
return depth
|
24 |
+
iface = gr.Interface(launch,
|
25 |
+
inputs=gr.Image(type='pil'),
|
26 |
+
outputs=gr.Image(type='pil'))
|
27 |
+
iface.launch()
|