#%% import gradio as gr from ultralytics import YOLO import cv2 from huggingface_hub import hf_hub_download REPO_ID = "RandomCatLover/bird_detector" FILENAME = "best.pt" hf_hub_download(repo_id=REPO_ID, filename=FILENAME, local_dir=".") #%% yolo = YOLO("best.pt") def predict(img): results = yolo(img) for result in results: try: bbox = result.boxes.xyxy[0] except: continue bbox = [int(i) for i in bbox] img = cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2) return img #%% demo = gr.Interface(predict, "image", "image", examples=[ f"imgs/{i}.jpg" for i in range(1,7) ], cache_examples=True, allow_flagging='never') demo.launch(debug=True)