import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import matplotlib.pyplot as plt import random import streamlit as st import requests from io import BytesIO IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def prediction(model, image_file, question): question = f"\n{question}" # set the max number of tiles in `max_num` pixel_values = load_image(image_file, max_num=12).to(torch.bfloat16) generation_config = dict(max_new_tokens=1024, do_sample=False) response = model.chat(tokenizer, pixel_values, question, generation_config) return response # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'Ramji/slake_vqa_internvl_demo' intern_model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=False, trust_remote_code=True).eval() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # Title of the Streamlit app st.title("Image VQA") # Step 1: Upload an image st.header("Upload an Image") uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) # Step 2: Input a question st.header("Ask a Question") question = st.text_input("Type your question here:") # Step 3: Handle the uploaded image by saving it and reading its path if uploaded_image is not None: # Save the uploaded image to a file image_path = os.path.join("uploaded_images", uploaded_image.name) # Make sure the directory exists os.makedirs("uploaded_images", exist_ok=True) # Write the image to a file with open(image_path, "wb") as f: f.write(uploaded_image.getbuffer()) # Read the image from the saved file path image = Image.open(image_path) # Display the uploaded image st.image(image, caption="Uploaded Image", use_column_width=True) st.write(f"Image saved at: {image_path}") # Step 4: Display the typed question if question: st.write(f"Your question: **{question}**") # Optional: Process the image and question for a VLM (like CLIP or BLIP) if uploaded_image and question: st.write("Processing the image and question...") output = prediction(intern_model, image_file, question) st.write("Model output: This is where the answer will appear.")